extractive metallurgy
Recently Published Documents


TOTAL DOCUMENTS

267
(FIVE YEARS 30)

H-INDEX

19
(FIVE YEARS 2)

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 154
Author(s):  
Srirat Chuayboon ◽  
Stéphane Abanades

The solar carbo-thermal and methano-thermal reduction of both MgO and ZnO were performed in a flexible solar reactor operated at low pressure through both batch and continuous operations. The pyro-metallurgical process is an attractive sustainable pathway to convert and store concentrated solar energy into high-value metal commodities and fuels. Substituting fossil fuel combustion with solar energy when providing high-temperature process heat is a relevant option for green extractive metallurgy. In this study, a thermodynamic equilibrium analysis was first performed to compare the thermochemical reduction of MgO and ZnO with solid carbon or gaseous methane, and to determine the product distribution as a function of the operating conditions. The carbo-thermal and methano-thermal reduction of the MgO and ZnO volatile oxides was then experimentally assessed and compared using a directly irradiated cavity-type solar reactor under different operating conditions, varying the type of carbon-based reducing agent (either solid carbon or methane), temperature (in the range 765–1167 °C for ZnO and 991–1550 °C for MgO), total pressure (including both reduced 0.10–0.15 bar and atmospheric ~0.90 bar pressures), and processing mode (batch and continuous operations). The carbo-thermal and methano-thermal reduction reactions yielded gaseous metal species (Mg and Zn) which were recovered at the reactor outlet as fine and reactive metal powders. Reducing the total pressure favored the conversion of both MgO and ZnO and increased the yields of Mg and Zn. However, a decrease in the total pressure also promoted CO2 production because of a shortened gas residence time, especially in the case of ZnO reduction, whereas CO2 formation was negligible in the case of MgO reduction, whatever the conditions. Continuous reactant co-feeding (corresponding to the mixture of metal oxide and carbon or methane) was also performed during the solar reactor operation, revealing an increase in both gas production yields and reaction extent while increasing the reactant feeding rate. The type of carbon reducer influenced the reaction extent, since a higher conversion of both MgO and ZnO was reached when using carbon with a highly available specific surface area for the reactions. The continuous solar process yielded high-purity magnesium and zinc content in the solar-produced metallic powders, thus confirming the reliability, flexibility, and robustness of the solar reactor and demonstrating a promising solar metallurgical process for the clean conversion of both metal oxides and concentrated solar light to value-added chemicals.


2022 ◽  
pp. 49-62
Author(s):  
Necdet Aslan

Atmospheric-pressure plasmas have a wide variety of potential industrial applications. They are used in extractive metallurgy; metal recovery; novel nanomaterial synthesis; refractory and wear-resistant coatings deposition; chemical synthesis; energy conversion; industrial, medical, and nuclear waste destruction; engine combustion enhancement; and exhaust gas pollutants clean up. Atmospheric plasmas are produced by applying DC or AC high voltage between two electrodes designed as cylindrical in shape for jets and planar for the dielectric barrier discharge systems. This review presents an overview of the use of atmospheric-pressure plasma devices and industrial processes carried out in several of these areas.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1425
Author(s):  
Mohammed El Khalloufi ◽  
Olivier Drevelle ◽  
Gervais Soucy

For several decades, the metallurgical industry and the research community worldwide have been challenged to develop energy-efficient and low-cost titanium production processes. The expensive and energy-consuming Kroll process produces titanium metal commercially, which is highly matured and optimized. Titanium’s strong affinity for oxygen implies that conventional Ti metal production processes are energy-intensive. Over the past several decades, research and development have been focusing on new processes to replace the Kroll process. Two fundamental groups are categorized for these methods: thermochemical and electrochemical. This literature review gives an insight into the titanium industry, including the titanium resources and processes of production. It focuses on ilmenite as a major source of titanium and some effective methods for producing titanium through extractive metallurgy processes and presents a critical view of the opportunities and challenges.


2021 ◽  
Vol 5 ◽  
pp. 100306
Author(s):  
Nobuyuki Mizuno ◽  
Shoki Kosai ◽  
Eiji Yamasue

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6228
Author(s):  
Juliana S. S. Oliveira ◽  
Ronald R. Hacha ◽  
Felipe S. d’Almeida ◽  
Caroline A. Almeida ◽  
Francisco J. Moura ◽  
...  

The production of electronic waste due to technological development, economic growth and increasing population has been rising fast, pushing for solutions before the environmental pressure achieves unprecedented levels. Recently, it was observed that many extractive metallurgy alternatives had been considered to recover value from this type of waste. Regarding pyrometallurgy, little is known about the low-temperature processing applied before fragmentation and subsequent component separation. Therefore, the present manuscript studies such alternative based on scanning electron microscopy characterization. The sample used in the study was supplied by a local recycling center in Rio de Janeiro, Brazil. The mass loss was constant at around 30% for temperatures higher than 300 °C. Based on this fact, the waste material was then submitted to low-temperature processing at 350 °C followed by attrition disassembling, size classification, and magnetic concentration steps. In the end, this first report of the project shows that 15% of the sample was recovered with metallic components with high economic value, such as Cu, Ni, and Au, indicating that such methods could be an interesting alternative to be explored in the future for the development of alternative electronic waste extraction routes.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 978
Author(s):  
Srecko Stopic ◽  
Bernd Friedrich

Unit operations (UO) are mostly used in non-ferrous extractive metallurgy (NFEM) and usually separated into three categories: (1) hydrometallurgy (leaching under atmospheric and high pressure conditions, mixing of solution with gas and mechanical parts, neutralization of solution, precipitation and cementation of metals from solution aiming purification, and compound productions during crystallization), (2) pyrometallurgy (roasting, smelting, refining), and (3) electrometallurgy (aqueous electrolysis and molten salt electrolysis). The high demand for critical metals, such as rare earth elements (REE), indium, scandium, and gallium raises the need for an advance in understanding of the UO in NFEM. The aimed metal is first transferred from ores and concentrates to a solution using a selective dissolution (leaching or dry digestion) under an atmospheric pressure below 1 bar at 100 °C in an agitating glass reactor and under a high pressure (40–50 bar) at high temperatures (below 270 °C) in an autoclave and tubular reactor. The purification of the obtained solution was performed using neutralization agents such as sodium hydroxide and calcium carbonate or more selective precipitation agents such as sodium carbonate and oxalic acid. The separation of metals is possible using liquid (water solution)/liquid (organic phase) extraction (solvent extraction (SX) in mixer-settler) and solid-liquid filtration in chamber filter-press under pressure until 5 bar. Crystallization is the process by which a metallic compound is converted from a liquid into a crystalline state via a supersaturated solution. The final step is metal production using different methods (aqueous electrolysis for basic metals such as copper, zinc, silver, and molten salt electrolysis for REE and aluminum). Advanced processes, such as ultrasonic spray pyrolysis, microwave assisted leaching, and can be combined with reduction processes in order to produce metallic powders. Some preparation for the leaching process is performed via a roasting process in a rotary furnace, where the sulfidic ore was first oxidized in an oxidic form which is a suitable for the metal transfer to water solution. UO in extractive metallurgy of REE can be successfully used not only for the metal wining from primary materials, but also for its recovery from secondary materials.


Minerals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 521
Author(s):  
Frank K. Crundwell

The kinetics of the dissolution of salts and minerals remains a field of active research because these reactions are important to many fields, such as geochemistry, extractive metallurgy, corrosion, biomaterials, dentistry, and dietary uptake. A novel model, referred to as the surface-vacancy model, has been proposed by the author as a general mechanism for the primary events in dissolution. This paper expands on the underlying physical model while serving as an update on current progress with the application of the model. This underlying physical model envisages that cations and anions depart separately from the surface leaving a surface vacancy of charge opposite to that of the departing ion on the surface. This results in an excess surface charge, which in turn affects the rate of departing ions. Thus, a feedback mechanism is established in which the departing of ions creates excess surface charge, and this net surface charge, in turn, affects the rate of departure. This model accounts for the orders of reaction, the equilibrium conditions, the acceleration or deceleration of rate in the initial phase and the surface charge. The surface-vacancy model can also account for the effect of impurities in the solution, while it predicts phenomena, such as ‘partial equilibrium’, that are not contemplated by other models. The underlying physical model can be independently verified, for example, by measurements of the surface charge. This underlying physical model has implications for fields beyond dissolution studies.


Athenea ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 47-53
Author(s):  
Oscar Dam G.

A method of calculation has been derived to assess the nitrogen estimated content in iron reduced samples. The method is based on the review of observations and laboratory measurements of relationships between the rate of reduction and the corresponding metallic iron formation during the reduction process. The metallic iron formation has been calculated from relationships that apply to a wide variety of types of ores undergoing reduction under a nitrogen-containing gas mixture in proportions above 50% by volume. The empirical correlations found between the rates of metallization, the sample swelling index, and the equilibrium nitrogen solubility in iron can be used for determined the approximate final content of nitrogen in the reduced samples from the estimated and measured final volume of the reduced specimens. It is necessary to have an accurate analysis of the starting sample as well as the reducibility information. Keywords: Iron ore, nitriding, catastrophic swelling, rate of metallization, reduction degree. [1]M. Kumar, B. Himanshu & S. Kumar. “Reduction and Swelling of Fired Hematite Iron Ore Pellets by Non−coking Coal Fines for Application in Sponge Ironmaking”. Mineral Processing and Extractive Metallurgy Review- MINER PROCESS EXTR METALL REV. 34. 10.1080/08827508.2012.656776. 2012. [2]I. Mikko, M. Olli, A. Tuomas, V. Ville-Valtteri, K. Jari, P. Timo & F. Timo. “Dynamic and Isothermal Reduction Swelling Behaviour of Olivine and Acid Iron Ore Pellets under Simulated Blast Furnace Shaft Conditions”. ISIJ International. 52. 1257-1265. 10.2355/isijinternational.52.1257. 2012. [3]M. Kumar. “Study of reduction kinectics of iron ore pellets by noncoking coal”. Thesis of Master. National Institute of technology, Rourkela. 2009. [4]O. Dam. “The Influence of Nitrogen on the Swelling Mechanism of Iron Oxides During Reduction”. PhD Thesis .Univ. of London. 1983. [5]O. Dam and J. Jeffes. “Model for the Assessment of Chemical Composition of reduced iron ores from single measurements”. Ironmaking and Steelmaking Journal. Vol. 14, N`5. 1987. [6]O. Dam. “Efecto de la descomposición de gas de amoniaco (NH3) sobre el hinchamiento de óxidos de hierro durante reducción”. UCT Journal. Vol 100, 24. May 2020. [7]R. Agarwal and S. Hembram. “To Study the Reduction and Swelling Behavior Iron Ore Pellets”. BSc. Department of Metallurgical and Materials Engineering National Institute Of Technology, Rourkela. May 2013 [8]Z. Chen , C. Zeilstra , J. Van der Stel , J. Sietsma & Y. Yang. “Review and data evaluation for high-temperature reduction of iron oxide particles in suspension”. Ironmaking & Steelmaking. Vol. 47. N°7. pp. 741-747. 2019.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 818
Author(s):  
Eleni Mikeli ◽  
Efthimios Balomenos ◽  
Dimitrios Panias

Ionic liquids (ILs) have attracted great interest in the field of extractive metallurgy mainly because they can be utilized in low temperature leaching processes where they exhibit selectivity and recyclability. A major drawback in mixed aqueous-IL systems, is IL dissolution in the aqueous phase, which leads to IL losses, increasing the overall processing cost. This study advances the method for recovering scandium (Sc) from bauxite residue (BR) using as leaching agent the IL betainium bistriflimide, [Hbet][Tf2N] mixed with water, which has been reported in previous publications. Ionic liquid leachate (IL-PLS) was prepared by leaching BR with a mixture of [Hbet][Tf2N]-H2O and subjected to different stripping experiments using hydrochloric acid. The advancement, presented in this work, is related with the optimization of the metal extraction (stripping) from the IL-PLS, where an aqueous solution with high Sc concentration and minimum metal impurities and minimum IL co-extraction is produced. It is further proven that the metal cation extraction is defined by the stoichiometry of the acidic solution and the dissolution (losses) of the IL in the aqueous phase can be minimized by adjusting the volume ratio and the acid concentration. A two-step stripping process described, achieves the selective increase of Sc concentration by 8 times in the aqueous solution, while maintaining cumulative IL losses to similar levels as the optimum 1 step non-Sc selective stripping process.


Sign in / Sign up

Export Citation Format

Share Document