High accuracy radiative data for plasma opacities1This article is part of a Special Issue on the 10th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas.

2011 ◽  
Vol 89 (4) ◽  
pp. 439-449 ◽  
Author(s):  
Sultana N. Nahar

Opacity, which gives the measure of the radiation transport in plasmas, is caused by the repeated absorption and emission of the propagating radiation by the constituent plasma elements. Microscopically, opacity (κ) depends mainly on two radiative processes: (i) photo-excitation (bound-bound transition) and (ii) photo-ionization (bound-free transition) in addition to electron-photon scattering. The monochromatic opacity κ(ν) at photon frequency ν is determined by the atomic parameters, oscillator strengths (f), and photo-ionization cross sections (σPI). However, total monochromatic opacity is obtained from summed contributions of all possible transitions from all ionization stages of all elements in the source. The calculation of accurate parameters for such a large number of transitions has been the main problem for obtaining accurate opacities. The overall mean opacity, such as the Rosseland mean opacity (κR), depends also on the physical conditions, such as temperature, density, elemental abundances, and equation of state. The necessity for high-precision calculations for opacities may be exemplified by the existing problems, such as the determination of solar elemental abundances. With new computational developments under the Iron Project, we are able to calculate more accurate atomic parameters, such as oscillator strengths for large number of transitions using the relativistic Breit–Pauli R-matrix (BPRM) method. We are finding new features in photo-ionization, such as the existence of extensive and dominant resonant structures in the high-energy region not studied before. These new data should provide more accurate opacities in high-temperature plasmas and can be used to investigate the well-known solar abundance problem.


The quantal theory of the continuous photo-electric absorption of radiation is briefly summarized, pàrticular attention being given to the alternative formulae available and to the accuracy to be expected in practical calculations. Detailed calculations are described for the photo-ionization cross-section of neon, a system for which it is understood that experimental data should be available in the near future. The calculation is made using Hartree-Fock wave functions and the two formulae of the dipole length and the dipole velocity. The corresponding cross-sections are found to be 5.8 and 4.4 x 10- 18 cm 2 . at the spectral head and to rise slowly with increasing frequency until a broad maximum is reached for an energy of the ejected electron of about 11 eV. A comparison is made with previous calculations on the elements from boron to neon ; the general trend of the results is discussed and improved estimates for boron and fluorine are given (10 x 10 -18 cm 2 . for boron and 4.3 x 10- 18 cm 2 . for fluorine at the spectral head).



Atoms ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 60 ◽  
Author(s):  
Yogesh Kumar ◽  
Manoj Kumar ◽  
Sachin Kumar ◽  
Rajeev Kumar

In the present investigation, the plane-wave Born approximation was employed to calculate the total ionization cross sections by electron impact of methanol, ethanol and 1-propanol from the threshold of ionization to 10 MeV. This method requires continuum generalized oscillator strengths (CGOSs). The two different semi-phenomenological expressions of CGOS, given by Mayol and Salvat and Weizsacker and Williams, along with approximated form of the continuum optical oscillator strength (COOS) by Khare et al. were used. Furthermore, the average of the above two CGOSs was also used. The calculated ionization cross sections were compared to the available previous theoretical results and experimental data. Out of three CGOSs, the present results with the average CGOS were found in good agreement with the available experimental results for all the considered molecules. Collision parameters CRP were also calculated from 0.1 to 100 MeV and the calculations were found to be in excellent agreement with the experimental results of Reike and Prepejchal.









Author(s):  
Igor D. Kaganovich ◽  
Edward A. Startsev ◽  
Ronald C. Davidson ◽  
Steve R. Kecskemeti ◽  
Amitai Bin-Nun ◽  
...  


1970 ◽  
Vol 42 (1) ◽  
pp. K1-K4 ◽  
Author(s):  
G. Björklund ◽  
H. G. Grimmeiss


Sign in / Sign up

Export Citation Format

Share Document