ABSOLUTE YIELDS OF THE XENON AND KRYPTON ISOTOPES IN U238 SPONTANEOUS FISSION

1960 ◽  
Vol 38 (1) ◽  
pp. 1-9 ◽  
Author(s):  
B. G. Young ◽  
H. G. Thode

The absolute abundances of the isotopes of fission-product xenon and krypton in six uranium minerals have been determined mass spectrometrically using the isotope dilution technique. The fission products were resolved into a U238 spontaneous fission component, a U235 neutron-induced fission component, and a U238 neutron-induced fission component. Internal consistency in the analysis was achieved only when the Xe129 yield used for the U235 thermal neutron fission component was 20% lower than that reported by Purkayastha and Martin at I129. This discrepancy in the mass 129 chain yield measured at I129 and at Xe129 has not been resolved.Only one of the six minerals, Cinch Lake pitchblende, retained essentially all of its fission product inert gases throughout geological time. Inert gas losses from the remaining five minerals ranged from 20% to 75%. The absolute yields of the stable xenon and krypton fission products in U238 spontaneous fission were determined from an analysis of the inert gases from the Cinch Lake mineral. This analysis showed that 95.9% of the fission gas in this case resulted from the spontaneous fission and only 4.1% from neutron-induced fission.

1983 ◽  
Vol 61 (11) ◽  
pp. 1490-1497 ◽  
Author(s):  
K. J. R. Rosman ◽  
J. R. De Laeter ◽  
J. W. Boldeman ◽  
H. G. Thode

The relative cumulative fission yields of the six stable isotopes of tin (117Sn,118Sn, 119Sn, 120Sn, 122Sn, and 124Sn) and the long-lived isotope 126Sn have been measured in the thermal and epicadium neutron fission of 233U and 235U, and the epicadium neutron fission of 238U. Nanogram-sized fission product tin samples were extracted from irradiated uranium samples and analyzed in a solid source mass spectrometer. In each case a smooth curve can be drawn through the yield points of the seven isotopes of tin. There is, therefore, no evidence of "fine structure" in the 117 ≤ A ≤ 126 portion of the symmetric mass region.


2020 ◽  
Vol 232 ◽  
pp. 03006
Author(s):  
M. A. Stoyer ◽  
A. P. Tonchev ◽  
J. A. Silano ◽  
M. E. Gooden ◽  
J. B. Wilhelmy ◽  
...  

Fission product yields (FPY) are one of the most fundamental quantities that can be measured for a fissioning nucleus and are important for basic and applied nuclear physics. Recent measurements using mono-energetic and pulsed neutron beams generated using Triangle Universities Nuclear Laboratory’s tandem accelerator and employing a dual fission chamber setup have produced self-consistent, high-precision data critical for testing fission models for the neutron-induced fission of 235,238U and 239Pu between neutron energies of 0.5 to 15.0 MeV. These data have elucidated a low-energy dependence of FPY for several fission products using irradiations of varying lengths and neutron energies. This paper will discuss new measurements just beginning utilizing a RApid Belt-driven Irradiated Target Transfer System (RABITTS) to measure shorterlived fission products and the time dependence of fission yields, expanding the measurements from cumulative towards independent fission yields. The uniqueness of these FPY data and the impact on the development of fission theory will be discussed.


1955 ◽  
Vol 33 (11) ◽  
pp. 693-706 ◽  
Author(s):  
J. A. Petruska ◽  
H. G. Thode ◽  
R. H. Tomlinson

Twenty-eight absolute fission yields totalling 78% of the heavy and 16% of the light fragments have been determined using the mass spectrometer and isotope dilution techniques. The precision of the values obtained is in most cases better than 2% and the absolute accuracy is estimated to be about 3%. Fine structure in the mass–yield curve is discussed in terms of structural preference and various chain branching mechanisms.


1977 ◽  
Author(s):  
J.K. Dickens ◽  
J.F. Emery ◽  
T.A. Love ◽  
J.W. McConnell ◽  
K.J. Northcutt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document