Cumulative yields of stable and long-lived isotopes of tin in neutron-induced fission

1983 ◽  
Vol 61 (11) ◽  
pp. 1490-1497 ◽  
Author(s):  
K. J. R. Rosman ◽  
J. R. De Laeter ◽  
J. W. Boldeman ◽  
H. G. Thode

The relative cumulative fission yields of the six stable isotopes of tin (117Sn,118Sn, 119Sn, 120Sn, 122Sn, and 124Sn) and the long-lived isotope 126Sn have been measured in the thermal and epicadium neutron fission of 233U and 235U, and the epicadium neutron fission of 238U. Nanogram-sized fission product tin samples were extracted from irradiated uranium samples and analyzed in a solid source mass spectrometer. In each case a smooth curve can be drawn through the yield points of the seven isotopes of tin. There is, therefore, no evidence of "fine structure" in the 117 ≤ A ≤ 126 portion of the symmetric mass region.

1961 ◽  
Vol 39 (3) ◽  
pp. 628-634 ◽  
Author(s):  
D. R. Bidinosti ◽  
D. E. Irish ◽  
R. H. Tomlinson

Using the mass spectrometer and isotope dilution technique, 27 cumulative fission yields from the thermal neutron fission of U233 along with 13 other fission product chains relative to each other have been determined. After normalization of the latter, values are obtained for all but seven fission decay chains whose yields are in excess of 0.5%.


1959 ◽  
Vol 37 (8) ◽  
pp. 916-925 ◽  
Author(s):  
H. R. Fickel ◽  
R. H. Tomlinson

The relative cumulative yields of 19 light mass fragments of rubidium, strontium, yttrium, zirconium, molybdenum, and ruthenium formed in the thermal neutron fission of Pu239 have been determined with a mass spectrometer using the isotope dilution technique.The yields of the fission product isotopes of these elements, together with the previously published relative yields of three krypton isotopes, have made possible the determination of the absolute yields of 22 light fragment mass chains.


1978 ◽  
Vol 56 (10) ◽  
pp. 1340-1352 ◽  
Author(s):  
Masako Shima ◽  
H. G. Thode ◽  
R. H. Tomlinson

The relative cumulative yields of nine stable and long-lived isotopes of ruthenium and palladium (masses 101 to 110) produced in the thermal neutron fission of 233U and in the thermal and epicadmium neutron fission of 235U and 239Pu have been measured using a solid source mass spectrometer and isotope dilution techniques. Absolute yields of these isotopes for the thermal neutron fission of 233U, 235U, and 239Pu are obtained using normalization procedures. These yields provide the first experimentally determined yields of the palladium masses 105, 106, 107, 108, and 110.In the thermal fission of 233U and 235U the ruthenium isotope yields obtained are in general agreement with previously determined values, although discrepancies exist of the order of 10% at masses 103, 104, and 106 for thermal fission of 235U.A plot of the ruthenium and palladium isotope mass yields together with the previously determined yields for the cadmium and tin isotopes indicate a significant depression in the mass yield curve at masses 111 and 114 for 233U and 235U thermal fission, respectively. In the 235U epicadmium fission, yields at even mass numbers are relatively higher than those at odd numbers, resulting in a zigzag yield curve in the 101 to 110 mass region.


1969 ◽  
Vol 47 (3) ◽  
pp. 275-278 ◽  
Author(s):  
K. S. Thind ◽  
R. H. Tomlinson

It is predicted that there should be fine structure in the cumulative mass yield curve in the symmetric mass region where major discontinuities in the neutron emission vs. mass curve exist. In the case of low-energy neutron fission of 238U, this fine structure takes the form of a pronounced depression in the region of mass 125. Under similar conditions for 232Th, the fine structure may take the form of depressions in the region of mass 110 and 125 so that the cumulative mass yield curve appears to have a central peak.


1947 ◽  
Vol 25a (1) ◽  
pp. 1-14 ◽  
Author(s):  
H. G. Thode ◽  
R. L. Graham

Mass spectrometer investigations have been made of rare gas fission products extracted from uranium irradiated with thermal neutrons. The irradiated uranium rods were allowed to stand for various periods of time after irradiation to permit the decay of most fission product chains to stable isotopes. Four stable isotopes of xenon were found having mass numbers 131, 132, 134, and 136, and three stable isotopes of krypton with mass numbers 83, 84, and 86. Kr86, the most abundant of the latter group, is probably formed directly in fission. In addition a long lived krypton with mass 85 was discovered which is isomeric with a 4.0 hr. Kr85 reported previously.The relative abundances of these isotopes which are related directly to fission yields of the corresponding mass chains have been determined with an accuracy of 1% or better. The mass numbers of these fission chains can now be identified with certainty by comparing mass spectrometer abundance data with known yield values of the active chain members. Finally, the half-life of krypton 85 was determined by comparing its concentration to that of a stable isotope over a period of time.


1957 ◽  
Vol 35 (8) ◽  
pp. 969-979 ◽  
Author(s):  
T. J. Kennett ◽  
H. G. Thode

The relative fission yields for mass chains ending in stable krypton and xenon isotopes have been measured for the fast neutron-induced fission of Th232. Isotope dilution techniques were used to determine the krypton/xenon ratio to assist in obtaining the absolute fission yields for these mass chains. The absolute yields were determined by the use of two methods, both giving results which were in excellent agreement. The fine structure observed for the Th232 mass–yield curve is compared with that of heavier fissile nuclides.


2018 ◽  
Vol 193 ◽  
pp. 02002
Author(s):  
S. Julien-Laferrière ◽  
G. Kessedjian ◽  
O. Serot ◽  
A. Chebboubi ◽  
D. Bernard ◽  
...  

Nuclear fission yields data measurements for thermal neutron induced fission of 241Pu have been carried out at the ILL in Grenoble, using the Lohengrin mass spectrometer. The relative isotopic yields for the masses 137 up to 141 have been derived with the associated experimental covariance matrices. Moreover, from preliminary results for the masses 92, 138 and 139, a clear evolution over fission product kinetic energy of the isotopic total count rate is observed.


1954 ◽  
Vol 32 (8) ◽  
pp. 522-529 ◽  
Author(s):  
W. Fleming ◽  
R. H. Tomlinson ◽  
H. G. Thode

The fission yields of Xe131, Xe132, Xe134, Xe136, Cs133, Cs135, Cs137, Kr83, Kr84, 10.27 year Kr85, and Kr86 in the neutron fission of U233 have been determined by mass spectrometer methods. The very pronounced fine structure in the mass yield curve in the mass range 131 to 137 found in U235 fission does not occur in the fission of U233. This disappearance of fine structure would not have been predicted by any of the mechanisms which have been suggested to explain the fine structure in U235 fission. The fission yield of the 10.27 year isomer of Kr85 relative to the other krypton isotopes is considerably higher in U233 fission than in U235 fission, indicating some fine structure in this mass range which may be related to the closed shell of 50 neutrons.


2020 ◽  
Vol 232 ◽  
pp. 03006
Author(s):  
M. A. Stoyer ◽  
A. P. Tonchev ◽  
J. A. Silano ◽  
M. E. Gooden ◽  
J. B. Wilhelmy ◽  
...  

Fission product yields (FPY) are one of the most fundamental quantities that can be measured for a fissioning nucleus and are important for basic and applied nuclear physics. Recent measurements using mono-energetic and pulsed neutron beams generated using Triangle Universities Nuclear Laboratory’s tandem accelerator and employing a dual fission chamber setup have produced self-consistent, high-precision data critical for testing fission models for the neutron-induced fission of 235,238U and 239Pu between neutron energies of 0.5 to 15.0 MeV. These data have elucidated a low-energy dependence of FPY for several fission products using irradiations of varying lengths and neutron energies. This paper will discuss new measurements just beginning utilizing a RApid Belt-driven Irradiated Target Transfer System (RABITTS) to measure shorterlived fission products and the time dependence of fission yields, expanding the measurements from cumulative towards independent fission yields. The uniqueness of these FPY data and the impact on the development of fission theory will be discussed.


1955 ◽  
Vol 33 (11) ◽  
pp. 693-706 ◽  
Author(s):  
J. A. Petruska ◽  
H. G. Thode ◽  
R. H. Tomlinson

Twenty-eight absolute fission yields totalling 78% of the heavy and 16% of the light fragments have been determined using the mass spectrometer and isotope dilution techniques. The precision of the values obtained is in most cases better than 2% and the absolute accuracy is estimated to be about 3%. Fine structure in the mass–yield curve is discussed in terms of structural preference and various chain branching mechanisms.


Sign in / Sign up

Export Citation Format

Share Document