EXCITED STATES OF O18 STUDIED BY THE REACTION

1961 ◽  
Vol 39 (2) ◽  
pp. 276-294 ◽  
Author(s):  
A. E. Litherland ◽  
R. Batchelor ◽  
A. J. Ferguson ◽  
H. E. Gove

Gamma rays from the excited states of O18 at 3.63 and 3.92 Mev have been observed using the reaction [Formula: see text] at an incident O16 energy of 14 Mev. Both states were observed to emit gamma rays to the 1.98-Mev 2+ first excited state of O18. No evidence for crossover transitions was found and in each case the crossover transition was estimated to be [Formula: see text] of the cascade transition. Angular correlations of the gamma rays were obtained and these strongly support an assignment of spin 0 to the 3.63-Mev state and a spin of 2 for the 3.92-Mev state. These assignments have been confirmed by a recent experiment on the O16(H3, p)O18 reaction which gives the assignments 0+ and 2+ for these two states. Thus the states at 3.55, 3.63, and 3.92 Mev form a triplet with assignments 4+, 0+, and 2+ which strongly resembles the vibrational spectra found in heavier nuclei. However, the measured angular correlations of the gamma rays from the 3.92-Mev state show only a small admixture of electric quadrupole in the 1.94-Mev gamma ray with relative amplitude +0.1 ±.1. A lower limit of ~10−12 seconds on the lifetime of the 3.63-Mev state was obtained from the absence of a doppler shift of the 1.65-Mev cascade gamma ray.

1960 ◽  
Vol 38 (7) ◽  
pp. 927-940 ◽  
Author(s):  
A. E. Litherland ◽  
G. J. McCallum

The Mg26(He4, nγ)Si29 reaction has been used to illustrate the simplifications introduced in the interpretation of triple angular correlations by choosing a target and bombarding particles of zero spin and by observing the emitted particles, in this case neutrons, in a counter fixed at 0° to the beam. The angular correlations of the gamma rays with respect to the incident beam then depend only upon the properties of the final states in the residual nucleus. The angular correlation of the electric quadrupole 2.03-Mev gamma ray is predicted uniquely by theory and this prediction has been verified experimentally. The angular correlations of the 1.28-Mev and 2.43-Mev gamma rays have yielded for the E2/M1 amplitude mixing ratios +0.25 ± 0.05 or −3.4 ± 0.5 and −0.26 ± 0.08 or −1.10 ± 0.16 respectively. In addition, the experiment provides an illustration of the value of the recently discovered technique of neutron – gamma-ray discrimination in an organic scintillator.


1968 ◽  
Vol 46 (19) ◽  
pp. 2181-2187 ◽  
Author(s):  
S. Santhanam

In the electron-capture decay of 144Pm prepared by (p, 2n) reaction on enriched 145Nd, it is shown that, in addition to the well-known energy levels at 696, 1313, and 1789 keV, two new levels exist, one at 2093 keV, and another at 1509 keV. The state at 2093 keV deexcites with the emission of a 304-keV gamma ray to the 6+ level at 1789 keV, and by a crossover transition to the 4+ level at 1313 keV with the emission of a 780-keV gamma ray. The level at 1509 keV leads to the first excited state (2+) at 696 keV with the emission of a gamma ray of energy 813 keV. The intensities of the 780-, 304-, and 813-keV gamma rays are, respectively, 1.5, ≈ 0.1, and 0.5% of that of the 696-keV gamma ray.


1969 ◽  
Vol 186 (4) ◽  
pp. 1174-1188 ◽  
Author(s):  
J. G. Pronko ◽  
C. Rolfs ◽  
H. J. Maier

1970 ◽  
Vol 48 (22) ◽  
pp. 2735-2750 ◽  
Author(s):  
G. C. Ball ◽  
J. S. Forster ◽  
F. Ingebretsen ◽  
C. F. Monahan

The 40Ca(α, pγ)43Sc reaction at Eα = 11.8 to 15.5 MeV has been used to investigate the level structure of 43Sc below 4.2 MeV excitation. Level energies and decay schemes were determined from proton–gamma coincidence spectra obtained using an annular surface barrier detector positioned near 180° and two 40 cm3 Ge(Li) detectors. Angular correlations were measured in the same configuration using an array of six 12.7 × 15.2 cm NaI(Tl) detectors mounted on the Chalk River LOTUS goniometer. Twelve new levels were observed in 43Sc and information on the spins, branching ratios, and gamma-ray multipole mixing ratios of these and several other excited states has been obtained. The results are compared with recent theoretical predictions of Johnstone. In particular, levels at 1931 and 2552 keV, 1830 keV and 1883 keV have been tentatively assigned as the 9/2+ and probable 11/2+ members of the kπ = 3/2+ band, the (fp)3, Jπ = 11/2− state, and the 9/2− member of the kπ = 3/2− band, respectively.


1961 ◽  
Vol 39 (6) ◽  
pp. 788-824 ◽  
Author(s):  
A. E. Litherland ◽  
A. J. Ferguson

Two general procedures for the measurement and analysis of angular correlations of gamma radiations from nuclear reactions are described which have wide applications in nuclear spectroscopy for the determination of spins and gamma-ray multipolarities. Cases can be studied by these methods when the reaction proceeds through a compound state too complex to allow the usual analysis to be made, for example where several levels overlap or where direct interaction is dominant. The basis of these procedures is to exploit the simplifications brought about by making the reacting system axially symmetric. A sharp gamma-ray-emitting state formed in such a system can be regarded as aligned and described in terms of a relatively small number of population parameters for the magnetic substates. In the first procedure, a state Y* is prepared by a nuclear reaction X(h1h2) Y* in which h2 is unobserved. The state Y* has axial symmetry about the beam axis. From coincidence angular correlation measurements of two cascade gamma rays from Y*, the unknown population parameters for Y* together with the nuclear spins and gamma-ray multipolarities can be determined. In the second procedure, h2 is measured in a small counter at 0° or 180° relative to the incident beam. It is then shown that the quantum numbers of the magnetic substates of Y* which can be populated do not exceed the sum of the spins of X, h1, and h2. In cases where the sum of the spins does not exceed [Formula: see text], the angular correlation of the gamma rays from the aligned state depends only upon the properties of the states in the residual nucleus. Theoretical expressions for angular correlations from aligned states are given, together with a method whereby existing extensive tables of coefficients can be used to calculate them. The results of two recent experiments are discussed as examples.


1962 ◽  
Vol 15 (3) ◽  
pp. 443 ◽  
Author(s):  
AW Parker ◽  
GG Shute

From a recent experiment in this laboratory (Shute et al. 1962) on the elastic scattering of protons from 12C, resonance levels (E13N, J1t) of 13N were obtained at the laboratory bombarding energies (Ep) shown in Table 1. To confirm these results, an investigation of the yield and angular distribution of gamma rays from the reaction 12C(p'YO)13N and 12C(p'Yl)13N was undertaken. Accordingly, the theoretical angular distributions, W(8), for the gamma ray (Yo) to the ground state of 13Na-) and also for the gamma ray (Yl) to the 1st excited state of 13Na+) were evaluated on the assumptions that overlap of levels in 13N is small and lowest order multipoles are involved. As angular distributions are parity insensitive, these were found to be identical for the two gamma rays expected. The simpler of these angular distributions are also shown on the table. The expected angular distributions indicate that 90� is a suitable angle for yield curves.


1977 ◽  
Vol 55 (2) ◽  
pp. 175-179 ◽  
Author(s):  
H. E. Bosch ◽  
V. M. Silbergleit ◽  
M. Davidson ◽  
J. Davidson

An investigation of the gamma–gamma ray angular correlations following the decay of 109Pd was made by using a Ge(Li) semiconductor counter and NaI(Tl) gamma-ray detector. Coincidences measurements at six different angles were made between the 311 keV gamma ray (gated in the movable counter) and 390, 413, 424, 551, and 558 keV gamma rays (displayed in a multichannel analyzer (MCA)). Chance coincidences as well as coincidence background were taken into account. The following spins and mixing ratios were determined: 701 keV level 3/2, δ(390) = 0.19 ± 0.06; 724 keV level 3/2, δ(413) = 0.18 ± 0.05; 735 keV level 5/2, δ(424) = −0.27 ± 0.03; 862 keV level 5/2, δ(551) = −0.28 ± 0.04; 869 keV level 5/2, δ(558) = −0.26 ± 0.05. The result indicates that the anisotropies are consistent with mixing ratios less than 28% in all cases.


1964 ◽  
Vol 42 (6) ◽  
pp. 1300-1310 ◽  
Author(s):  
C. Broude ◽  
M. A. Eswaran

Coincidence gamma-ray angular correlations of the cascade decays from the 3.34- and 4.47-Mev states in Ne22 through the first excited state have been measured. The levels were excited by the reaction F19 (α, p)Ne22. The correlations give an unambiguous spin assignment of 4 to the 3.34-Mev state; the analysis of the correlations from the 4.47-Mev state is not unique, allowing spin 2 or 3. The quadrupole-to-dipole amplitude ratio for the primary radiation is −0.11 ± 0.03 or −1.07 ± 0.10, respectively, for the spin-2 and spin-3 assignments.


1990 ◽  
Vol 113 (4) ◽  
pp. 297-302
Author(s):  
S. Connell ◽  
K. Bharuth-Ram ◽  
H. Appel ◽  
J. P. F. Sellschop ◽  
M. Stemmet

1958 ◽  
Vol 36 (10) ◽  
pp. 1409-1429 ◽  
Author(s):  
S. V. Nablo ◽  
M. W. Johns ◽  
R. H. Goodman ◽  
A. Artna

The beta- and gamma-ray spectra of Os191 and Os193 have been studied with a magnetic beta-ray spectrometer, scintillation spectrometers, and coincidence circuits. The 14-hour isomer of Os191 decays via a 0.0742-Mev (M3) transition. Gamma rays of energy 0.0418 (100%, E3), 0.0809 (1%, M1 + E2), 0.1287 (100%, M1 + E2), and 0.1858 (0.1%) Mev have been found to be associated with the 14.6 ± 0.3 day decay of Os191 and an extension of the accepted decay scheme proposed. The following 19 transitions have been associated with the 31.5 ± 0.5 hour decay of Os193: 0.0730 (14%), 0.1068 (~1%), 0.1393 (10%), 0.180 (0.3%), 0.196 (0.1%), 0.243 (~0.2%), 0.2485 (0.3%), 0.2514 (0.4%), 0.278 (0.6%), 0.2810 (1.6%), 0.2885 (0.3%), 0.2994 (0.4%), 0.314 (0.3%), 0.3218 (1.7%), 0.3620 (0.6%), 0.3878 (1.6%), 0.4604 (4.1%), 0.4857 (0.3%), and 0.5585 (2.2%). The internal conversion coefficients for all the stronger transitions suggest that they are M1 + E2 in character. The decay energy of Os193 is 1.132 ± 0.005 Mev. Fermi analyses and beta–gamma coincidence experiments have established excited states of Ir193 at 0.073, 0.139, 0.281, 0.362, 0.460, and 0.559 Mev above the ground state. Six otherwise unclassified weak gamma rays can be accommodated if levels at 0.247, 0.315, and 0.613 Mev are included in the decay scheme.The activation cross sections of Os184 and Os190 are (2.2 ± 0.5) × 103and 5.3 ± 2 barns respectively, relative to Seren's value of 1.6 ± 0.4 barns for Os192.


Sign in / Sign up

Export Citation Format

Share Document