Inelastic collisions between excited alkali atoms and molecules. VI. Sensitized fluorescence in mixtures of sodium with CH4, CD4, C2H2, C2H4, and C2H6

1969 ◽  
Vol 47 (12) ◽  
pp. 1249-1252 ◽  
Author(s):  
M. Stupavsky ◽  
L. Krause

The total cross sections for 32P1/2–32P3/2 mixing in sodium, induced in collisions with CH4, CD4, C2H2, C2H4, and C2H6 molecules, have been determined using the method of sensitized fluorescence. The sodium vapor – molecular gas mixtures were irradiated with each NaD component in turn, and the cross sections were obtained from measurements of relative intensities of the two D components present in the fluorescent light. The cross sections are as follows. For CH4: Q12(2P1/2 → 2P3/2) = 148 Å2, Q21(2P1/2 ← 2P3/2) = 77 Å2; for CD4: Q12 = 151 Å2, Q21 = 81 Å2; for C2H2: Q12 = 182 Å2, Q21 = 96 Å2; for C2H4: Q12 = 178 Å2, Q21 = 94 Å2; for C2H6: Q12 = 182 Å2, Q21 = 95 Å2. The cross sections Q21 are in good agreement with the values calculated according to the theory of Callaway and Bauer.

1968 ◽  
Vol 46 (19) ◽  
pp. 2127-2131 ◽  
Author(s):  
M. Stupavsky ◽  
L. Krause

3 2P1/2 ↔ 3 2P3/2 excitation transfer in sodium, induced in inelastic collisions with ground-state N2, H2, HD, and D2 molecules, has been investigated in a series of sensitized fluorescence experiments. Mixtures of sodium vapor at a pressure of 5 × 10−7 Torr, and the gases, were irradiated with each NaD component in turn, and the fluorescence which contained both D components was monitored at right angles to the direction of the exciting beam. Measurements of the relative intensities of the NaD fluorescent components yielded the following collision cross sections for excitation transfer. For Na–N2 collisions: Q12(2P1/2 → P3/2) = 144 Å2, Q21(2P1,2 ← 2P3/2) = 76 Å2 for Na–H2 collisions: Q12 = 80 Å2, Q21 = 42 Å2. For Na–HD collisions: Q12 = 84 Å2, Q21 = 44 Å2. For Na–D2 collisions: Q12 = 98 Å2, Q21 = 52 Å2. The cross sections Q21 exhibit a slight resonance effect between the atomic and molecular rotational transitions.


1968 ◽  
Vol 46 (2) ◽  
pp. 125-128 ◽  
Author(s):  
John Pitre ◽  
L. Krause

The total cross sections for 3 2P1/2–3 2P3/2 mixing collisions between excited and unexcited sodium atoms have been determined in a series of sensitized fluorescence experiments with pure sodium vapor at pressures in the range 0–1.6 × 10−5 mm Hg. The cross section Q2(3 2P1/2 ← 3 2P3/2) was found to be 283 Å2 ± 10%. The cross section Q1(3 2P1/2 → 3 2P3/2) = 532 Å2 was obtained from Q2 through the application of the principle of detailed balancing.


The importance of coupling for fast collisions between protons and hydrogen atoms is examined with the two-centred expansion in atomic eigenfunctions proposed by Bates (1958 a ). Cross-sections are evaluated for reactions H + + H (I s ) → H(I s ) + H + , H + + H( I s ) → H(2 s ) + H + , and H + + H(l a ) → H + + H(2 s ). The effect of a single intermediate state, either I s or 2 s , is considered. For the non-resonance processes, it is found that the cross-sections may be substantially increased by passage through intermediate state for incident energies less than about 10 keV, tending towards equality with decrease in relative velocity. Results obtained for the symmetrical resonance reactions are in good agreement with the two-state solutions of McCarroll (1961).


1966 ◽  
Vol 44 (4) ◽  
pp. 753-768 ◽  
Author(s):  
G. D. Chapman ◽  
L. Krause

Sensitized fluorescence in potassium vapor and its mixtures with inert gases was investigated in order to determine cross sections for the inelastic collisions leading to excitation transfer between the 4 2P1/2 and 4 2P3/2 states in potassium. The study was carried out at potassium vapor pressures of about 10−6 mm Hg, which were not formerly accessible to such experiments, and in the absence of radiation trapping. The cross sections Q1(4 2P1/2 → 42P3/2) and Q2(4 2P1/2 → 4 2P3/2) are as follows: for K–K collisions: 370 and 250 Å2; for K–He: 60 and 41 Å2; for K–Ne: 14 and 9.5 Å2; for K–A: 37 and 22 Å2; for K–Kr: 61 and 41 Å2; for K–Xe: 104 and 72 Å2. These values supersede those published previously (Chapman, Krause, and Brockman 1964; Chapman and Krause 1965). The cross sections for collisions between potassium and inert gas atoms do not increase monotonically with the polarizabilities of the inert gases but behave similarly to the electron – inert gas elastic scattering cross sections. This behavior is interpreted on the basis of a semiclassical model for the interaction, which involves overlap forces.


1973 ◽  
Vol 51 (3) ◽  
pp. 257-265 ◽  
Author(s):  
I. N. Siara ◽  
L. Krause

Excitation transfer between the 62P fine-structure substates in rubidium, induced in inelastic collisions with ground-state molecules, has been studied using techniques of sensitized fluorescence. Rubidium vapor in mixtures with various molecular gases was irradiated with each component of the 2P rubidium doublet in turn, and measurements of sensitized-to-resonance fluorescent intensity ratios yielded the following mixing cross sections Q12(2P1/2 → 2P3/2) and Q21(2P1/2 ← 2P3/2), as well as effective quenching cross sections Q1X(2P1/2 → 2XJ″) and Q2X(2P3/2 → 2XJ″). For collisions with H2: Q12(2P1/2 → 2P3/2) = (41 ± 5) Å2; Q21(2P1/2 ← 2P3/2) = (26 ± 3) Å2; Q1X(2P1/2 → 2XJ″) = (36 ± 9) Å2; Q2X(2P3/2 → 2XJ″) = (31 ± 8) Å2. For HD: Q12 = (42 ± 5) Å2; Q21 = (27 ± 4) Å2; Q1X = (47 ± 13) Å2; Q2X = (38 ± 10) Å2. For D2: Q12 = (42 ± 5) Å2; Q21 = (27 ± 4) Å2; Q1X = (28 ± 8) Å2; Q2X = (21 ± 7) Å2. For N2: Q12 = (107 ± 15) Å2; Q21 = (70 ± 10) Å2; Q1X = (128 ± 44) Å2; Q2X = (126 ± 33) Å2. For CH4: Q12 = (38 ± 6) Å2; Q21 = (24 ± 3) Å2; Q1X = (129 ± 41) Å2; Q2X = (114 ± 37) Å2. For CD4: Q12 = (52 ± 7) Å2; Q21 = (34 ± 5) Å2; Q1X = (82 ± 30) Å2; Q2X = (76 ± 22) Å2. An analysis of these results suggests the possibility of resonances with various molecular rotational and vibrational transitions.


1974 ◽  
Vol 52 (7) ◽  
pp. 589-591 ◽  
Author(s):  
E. Walentynowicz ◽  
R. A. Phaneuf ◽  
L. Krause

The dependence on temperature of the cross sections for 2P1/2 ↔ 2P3/2 mixing in cesium, induced in collisions with various deuterated hydrogen, ethane and propane molecules, has been studied in the range 290–650 K. In the cases of hydrogen and ethane, the behavior of the cross sections was found to depend on the degree of deuteration of the molecules. The very large sizes of the mixing cross sections and the isotope effect observed in their variation with temperature, are ascribed to the phenomenon of electronic to rotational energy transfer.


1970 ◽  
Vol 48 (22) ◽  
pp. 2761-2768 ◽  
Author(s):  
E. S. Hrycyshyn ◽  
L. Krause

52P1/2 ↔ 52P3/2 mixing and 52S1/2 ← 52P1/2, 2P3/2 quenching in rubidium, induced in collisions with ground state H2, HD, D2, N2, CH4, CD4, C2H4, and C2H6 molecules, have been investigated using methods of sensitized fluorescence. The rubidium vapor mixed with each of the gases was excited in turn by each component of the rubidium resonance doublet, and the resulting fluorescence, emitted at right angles to the direction of the exciting light, was resolved into the two fine-structure components whose intensity ratios were measured in relation to the gas pressure using photon counting techniques. The measurements yielded the following cross sections for the mixing and quenching collisions.For H2: Q12(2P1/2 → 2P3/2) = 11 Å2, Q21(2P1/2 ← 2P3/2) = 15 Å2, Q10(2S1/2 ← 2P1/2) = 6 Å2, Q20(2S1/2 ← 2P3/2) = 3 Å2.[Formula: see text]The mixing cross sections agree with theoretical values within an order of magnitude.


1974 ◽  
Vol 52 (11) ◽  
pp. 945-949 ◽  
Author(s):  
I. N. Siara ◽  
H. S. Kwong ◽  
L. Krause

The cross sections for 72P1/2–72P3/2 excitation transfer in cesium, induced in collisions with noble gas atoms, have been determined in a series of sensitized fluorescence experiments at temperatures ranging from 405 to 630 K. The cross sections which lie in the range 0.06–20 Å2, exhibit a temperature dependence which, however, is less pronounced than in the more adiabatic case of the cesium resonance doublet.


1966 ◽  
Vol 44 (4) ◽  
pp. 741-751 ◽  
Author(s):  
M. Czajkowski ◽  
D. A. McGillis ◽  
L. Krause

Sensitized fluorescence in cesium vapor induced by collisions with excited rubidium atoms was investigated in order to determine the total cross sections for inelastic collisions between excited rubidium atoms and cesium atoms in their ground states. The partial pressure of the rubidium vapor in the Rb–Cs mixture was kept below 2 × 10−5 mm Hg in order to eliminate effects due to the trapping of the Rb resonance radiation. The collision cross sections for the various excitation transfer processes are as follows: Q12′(Rb 5 2P1/2 → Cs 6 2P3/2) = 1.5 Å2; Q11′(Rb 5 2P1/2 → Cs 6 2P1/2) = 0.5 Å2; Q22′(Rb 5 2P3/2 → Cs 6 2P3/2) = 0.9 Å2; Q21′(Rb 5 2P3/2 → Cs 6 2P1/2) = 0.3 Å2. The fact that the cross sections are considerably smaller than those for collisions between similar atoms indicates that the Rb–Cs interactions probably involve van der Waals' forces with a much shorter range than exchange forces, which play a dominant role in Rb–Rb or Cs–Cs collisions.


Sign in / Sign up

Export Citation Format

Share Document