SENSITIZED FLUORESCENCE IN VAPORS OF ALKALI METALS: VII. ENERGY TRANSFER IN RUBIDIUM–CESIUM COLLISIONS

1966 ◽  
Vol 44 (4) ◽  
pp. 741-751 ◽  
Author(s):  
M. Czajkowski ◽  
D. A. McGillis ◽  
L. Krause

Sensitized fluorescence in cesium vapor induced by collisions with excited rubidium atoms was investigated in order to determine the total cross sections for inelastic collisions between excited rubidium atoms and cesium atoms in their ground states. The partial pressure of the rubidium vapor in the Rb–Cs mixture was kept below 2 × 10−5 mm Hg in order to eliminate effects due to the trapping of the Rb resonance radiation. The collision cross sections for the various excitation transfer processes are as follows: Q12′(Rb 5 2P1/2 → Cs 6 2P3/2) = 1.5 Å2; Q11′(Rb 5 2P1/2 → Cs 6 2P1/2) = 0.5 Å2; Q22′(Rb 5 2P3/2 → Cs 6 2P3/2) = 0.9 Å2; Q21′(Rb 5 2P3/2 → Cs 6 2P1/2) = 0.3 Å2. The fact that the cross sections are considerably smaller than those for collisions between similar atoms indicates that the Rb–Cs interactions probably involve van der Waals' forces with a much shorter range than exchange forces, which play a dominant role in Rb–Rb or Cs–Cs collisions.

1969 ◽  
Vol 47 (2) ◽  
pp. 215-221 ◽  
Author(s):  
E. S. Hrycyshyn ◽  
L. Krause

Sensitized fluorescence in rubidium vapor, induced by collisions with excited potassium atoms, was investigated to determine the total cross sections for inelastic collisions between excited potassium atoms and rubidium atoms in their ground states. The collision cross sections for the various excitation transfer processes are as follows: Q12′ (K42P1/2 → Rb52P3/2) = 40 Å2, Q22′ (K42P3/2 → Rb52P3/2) = 27 Å2, Q11′ (K42P1/2 → Rb52P1/2) = 2.7 Å2, and Q21′ (K42P3/2 → Rb52P1/2) = 1.9 Å2. The partial pressure of potassium vapor in the K–Rb mixture was kept largely below 10−5 mm Hg to eliminate effects due to the trapping of potassium resonance radiation.


1965 ◽  
Vol 43 (9) ◽  
pp. 1574-1588 ◽  
Author(s):  
A. G. A. Rae ◽  
L. Krause

Sensitized fluorescence in rubidium vapor has been investigated in order to determine total cross sections for collisions of the second kind between rubidium atoms, leading to the transfer of excitation between the 52P1/2and 52P3/2resonance levels. The experiments were carried out at vapor pressures below 10−5 mm Hg, where there is virtually no imprisonment of resonance radiation. The exceedingly low fluorescent intensities were registered in an automatically programmed sequence of measurements, using photon counting techniques. The cross sections Q1(52P1/2 → 52P3/2) and Q2(52P1/2 ← 52P3/2) equal 53 Å2and 68 Å2respectively at 87 °C and 60 Å2and 72 Å2respectively at 107 °C. At both temperatures the ratios Q1/Q2are in agreement with the values predicted by the principle of detailed balancing.


1969 ◽  
Vol 47 (2) ◽  
pp. 223-226 ◽  
Author(s):  
E. S. Hrycyshyn ◽  
L. Krause

The total cross sections for collisions between excited potassium and unexcited rubidium atoms, leading to the transfer of excitation between the 42P states in potassium, have been determined in a sensitized fluorescence experiment. The experiments were carried out at partial pressures of potassium vapor lower than 10−5 mm Hg, at which the imprisonment of resonance radiation may be disregarded. The cross sections Q12″ (42P1/2 → 42P3/2) and Q21″ (42P1/2 ← 42P3/2) equal 260 Å2 and 175 Å2, respectively, and are in the ratio predicted by the principle of detailed balancing.


1966 ◽  
Vol 44 (1) ◽  
pp. 91-103 ◽  
Author(s):  
M. Czajkowski ◽  
D. A. McGillis ◽  
L. Krause

The total cross sections for excitation transfer between the 6 2P1/2 and 6 2P3/2 levels in cesium, induced by collisions of the second kind between cesium and inert gas atoms, have been determined using methods of sensitized fluorescence. The experiments were carried out at a cesium vapor pressure of 1 × 10−6 mm Hg, at which there is no trapping of resonance radiation, and over a range of inert gas pressures extending from 1 to 300 mm Hg. The cross sections Q1(2P1/2 → P3/2) and Q2(2P1/2 ← 2P3/2) are as follows: Cs–He: 5.7 × 10−21 and 3.9 × 10−20 cm2; Cs–Ne: 1.9 × 10−21 and 3.1 × 10−20 cm2; Cs–A: 1.6 × 10−21 and 5.2 × 10−20 cm2; Cs–Kr: 8.3 × 10−21 and 18.4 × 10−20 cm2; Cs–Xe: 7.2 × 10−21 and 27.4 × 10−20 cm2. A mechanism for the excitation transfer is suggested, which involves an interaction between the inert gas atoms and the 6 2P electron in cesium, behaving as a free particle.


1965 ◽  
Vol 43 (7) ◽  
pp. 1259-1268 ◽  
Author(s):  
M. Czajkowski ◽  
L. Krause

Collisions of the second kind leading to the transfer of excitation between 6 2P1/2 and 6 2P3/2 states in cesium have been investigated by studying sensitized fluorescence in cesium vapor at pressures in the range 2 × 10−6 to 7 × 10−5 mm Hg, which were not accessible previously to such experiments and at which trapping of resonance radiation is virtually absent. The use of an improved fluorescence tube and of high-resolution interference filters in conjunction with a liquid-air-cooled photomultipler tube permitted accurate measurements of extremely low fluorescent light intensities. The total cross sections for the processes 6 2P1/2 → 6 2P3/2 and 6 2P1/2 ← 6 2P3/2 equal 0.64 × 10−15 cm2 and 3.1 × 10−15 cm2 respectively and are in a ratio of 0.20, which agrees well with the value predicted by the principle of detailed balancing.


1966 ◽  
Vol 44 (4) ◽  
pp. 753-768 ◽  
Author(s):  
G. D. Chapman ◽  
L. Krause

Sensitized fluorescence in potassium vapor and its mixtures with inert gases was investigated in order to determine cross sections for the inelastic collisions leading to excitation transfer between the 4 2P1/2 and 4 2P3/2 states in potassium. The study was carried out at potassium vapor pressures of about 10−6 mm Hg, which were not formerly accessible to such experiments, and in the absence of radiation trapping. The cross sections Q1(4 2P1/2 → 42P3/2) and Q2(4 2P1/2 → 4 2P3/2) are as follows: for K–K collisions: 370 and 250 Å2; for K–He: 60 and 41 Å2; for K–Ne: 14 and 9.5 Å2; for K–A: 37 and 22 Å2; for K–Kr: 61 and 41 Å2; for K–Xe: 104 and 72 Å2. These values supersede those published previously (Chapman, Krause, and Brockman 1964; Chapman and Krause 1965). The cross sections for collisions between potassium and inert gas atoms do not increase monotonically with the polarizabilities of the inert gases but behave similarly to the electron – inert gas elastic scattering cross sections. This behavior is interpreted on the basis of a semiclassical model for the interaction, which involves overlap forces.


1973 ◽  
Vol 51 (3) ◽  
pp. 257-265 ◽  
Author(s):  
I. N. Siara ◽  
L. Krause

Excitation transfer between the 62P fine-structure substates in rubidium, induced in inelastic collisions with ground-state molecules, has been studied using techniques of sensitized fluorescence. Rubidium vapor in mixtures with various molecular gases was irradiated with each component of the 2P rubidium doublet in turn, and measurements of sensitized-to-resonance fluorescent intensity ratios yielded the following mixing cross sections Q12(2P1/2 → 2P3/2) and Q21(2P1/2 ← 2P3/2), as well as effective quenching cross sections Q1X(2P1/2 → 2XJ″) and Q2X(2P3/2 → 2XJ″). For collisions with H2: Q12(2P1/2 → 2P3/2) = (41 ± 5) Å2; Q21(2P1/2 ← 2P3/2) = (26 ± 3) Å2; Q1X(2P1/2 → 2XJ″) = (36 ± 9) Å2; Q2X(2P3/2 → 2XJ″) = (31 ± 8) Å2. For HD: Q12 = (42 ± 5) Å2; Q21 = (27 ± 4) Å2; Q1X = (47 ± 13) Å2; Q2X = (38 ± 10) Å2. For D2: Q12 = (42 ± 5) Å2; Q21 = (27 ± 4) Å2; Q1X = (28 ± 8) Å2; Q2X = (21 ± 7) Å2. For N2: Q12 = (107 ± 15) Å2; Q21 = (70 ± 10) Å2; Q1X = (128 ± 44) Å2; Q2X = (126 ± 33) Å2. For CH4: Q12 = (38 ± 6) Å2; Q21 = (24 ± 3) Å2; Q1X = (129 ± 41) Å2; Q2X = (114 ± 37) Å2. For CD4: Q12 = (52 ± 7) Å2; Q21 = (34 ± 5) Å2; Q1X = (82 ± 30) Å2; Q2X = (76 ± 22) Å2. An analysis of these results suggests the possibility of resonances with various molecular rotational and vibrational transitions.


2016 ◽  
Vol 94 (4) ◽  
pp. 431-436
Author(s):  
S.A. Elkilany

Inelastic collisions of protons with rubidium atoms are treated for the first time within the framework of the three channel coupled static, and frozen core approximations. The method is used for calculating partial and total cross sections with the assumption that only three channels (elastic; non-excited hydrogen, 1s-state; and excited hydrogen, 2s-state) are open. We have used the Lipmann–Schwinger equation and the Green’s functions iterative numerical method technique to solve the derived coupled integro-differential equations to obtain the computer code. The present results for total hydrogen formation cross sections are in agreement with results of other available ones in a wide range of incident energy.


1970 ◽  
Vol 48 (22) ◽  
pp. 2761-2768 ◽  
Author(s):  
E. S. Hrycyshyn ◽  
L. Krause

52P1/2 ↔ 52P3/2 mixing and 52S1/2 ← 52P1/2, 2P3/2 quenching in rubidium, induced in collisions with ground state H2, HD, D2, N2, CH4, CD4, C2H4, and C2H6 molecules, have been investigated using methods of sensitized fluorescence. The rubidium vapor mixed with each of the gases was excited in turn by each component of the rubidium resonance doublet, and the resulting fluorescence, emitted at right angles to the direction of the exciting light, was resolved into the two fine-structure components whose intensity ratios were measured in relation to the gas pressure using photon counting techniques. The measurements yielded the following cross sections for the mixing and quenching collisions.For H2: Q12(2P1/2 → 2P3/2) = 11 Å2, Q21(2P1/2 ← 2P3/2) = 15 Å2, Q10(2S1/2 ← 2P1/2) = 6 Å2, Q20(2S1/2 ← 2P3/2) = 3 Å2.[Formula: see text]The mixing cross sections agree with theoretical values within an order of magnitude.


1969 ◽  
Vol 47 (12) ◽  
pp. 1249-1252 ◽  
Author(s):  
M. Stupavsky ◽  
L. Krause

The total cross sections for 32P1/2–32P3/2 mixing in sodium, induced in collisions with CH4, CD4, C2H2, C2H4, and C2H6 molecules, have been determined using the method of sensitized fluorescence. The sodium vapor – molecular gas mixtures were irradiated with each NaD component in turn, and the cross sections were obtained from measurements of relative intensities of the two D components present in the fluorescent light. The cross sections are as follows. For CH4: Q12(2P1/2 → 2P3/2) = 148 Å2, Q21(2P1/2 ← 2P3/2) = 77 Å2; for CD4: Q12 = 151 Å2, Q21 = 81 Å2; for C2H2: Q12 = 182 Å2, Q21 = 96 Å2; for C2H4: Q12 = 178 Å2, Q21 = 94 Å2; for C2H6: Q12 = 182 Å2, Q21 = 95 Å2. The cross sections Q21 are in good agreement with the values calculated according to the theory of Callaway and Bauer.


Sign in / Sign up

Export Citation Format

Share Document