Coherence Transfer between the 2P1/2 and 2P3/2 States in Potassium, Induced in Collisions with Noble Gas Atoms and with Molecules

1973 ◽  
Vol 51 (4) ◽  
pp. 425-430 ◽  
Author(s):  
B. Niewitecka ◽  
L. Krause

The transfer of coherence accompanying 42P1/2 → 42P3/2 transfer of excitation induced in collisions between 42P1/2 potassium atoms and noble gas atoms as well as some simple molecules, was studied in a series of sensitized fluorescence experiments. Mixtures of potassium vapor at 6 × 10−7 Torr with the various buffer gases were irradiated with circularly polarized D1(σ+) light and the relative intensities of the σ+ and σ− fractions of both the D1 and D2 fluorescent components were determined in relation to the pressures of the buffer gases. The experiments yielded the following cross sections for coherence transfer: K–He:1.7 Å2; K–Ne :0.8 Å2; K–Ar < 0.5 Å2; K–H2 :3.5 Å2; K–CH4 :7.0 Å2; K–CD4:7.7 Å2.

1975 ◽  
Vol 53 (15) ◽  
pp. 1499-1503 ◽  
Author(s):  
B. Niewitecka ◽  
L. Krause

The cross sections for disorientation of 42P1/2 potassium atoms, induced in collisions with noble gas atoms, have been determined in zero magnetic field by studying the depolarization of K(7699 Å) resonance fluorescence in relation to noble gas pressures. Potassium vapor at low density, mixed with a noble gas in a fluorescence vessel, was irradiated with circularly polarized 7699 Å potassium resonance radiation and the resulting resonance fluorescence, observed in an approximately backward direction, was analyzed with respect to circular polarization. The variation of the degree of polarization with gas pressure was interpreted on the basis of a 'J randomization' model for the collisions and yielded the following disorientation cross sections which are appropriately corrected for the effect of nuclear spin: K–He, 24 ± 4 Å2; K–Ne, 21 ± 3 Å2; K–Ar, 37 ± 5 Å2; K–Kr, 51 ± 7 Å2; K–Xe, 69 ± 9 Å2. The cross sections are significantly smaller than values obtained previously in kilogauss fields.


1973 ◽  
Vol 51 (9) ◽  
pp. 993-997 ◽  
Author(s):  
B. Niewitecka ◽  
L. Krause

Coherence transfer accompanying 32P1/2 → 32P3/2 excitation transfer in sodium, induced in collisions with noble gas atoms, has been investigated using methods of sensitized fluorescence. Oriented 32P1/2 sodium atoms were produced by irradiating a mixture of sodium vapor and a noble gas with D1σ+ resonance radiation, and their subsequent collisions with the buffer gas atoms resulted in the simultaneous transfer of coherence and excitation from the 2P1/2 state to the 2P3/2 state. Measurements of the ratio of circular polarizations of the D2 sensitized fluorescence and D1 resonance fluorescence resulted in the following cross sections for coherence transfer. Na–He : 7.1 ± 0.7 Å2; Na–Ne : 6.2 ± 0.6 Å2; Na–Ar : 12.0 ± 1.2 Å2; Na–Kr : 6.8 ± 0.7 Å2; Na–Xe : 6.9 ± 0.7 Å2.


1976 ◽  
Vol 54 (7) ◽  
pp. 748-752 ◽  
Author(s):  
B. Niewitecka ◽  
L. Krause

The disorientation of 62P1/2 cesium atoms, induced in collisions with noble gas atoms in their ground states, was systematically investigated by monitoring the depolarization of cesium resonance fluorescence in relation to noble gas pressures. The Cs atoms, contained together with a buffer gas in a fluorescence cell and located in zero magnetic field, were excited and oriented by irradiation with circularly polarized 8943 Å resonance radiation, and the resonance fluorescence, emitted in an approximately backward direction, was analyzed with respect to circular polarization. The experiments yielded the following disorientation cross sections which have been corrected for the effects of nuclear spin: Cs–He: 4.9 ± 0.7 Å2; Cs–Ne: 2.1 ± 0.3 Å2; Cs–Ar: 5.6 ± 0.8 Å2; Cs–Kr: 5.8 ± 0.9 Å2; Cs–Xe: 6.3 ± 0.9 Å2. The results are in good agreement with most of the available zero-field and low-field data.


1966 ◽  
Vol 44 (4) ◽  
pp. 753-768 ◽  
Author(s):  
G. D. Chapman ◽  
L. Krause

Sensitized fluorescence in potassium vapor and its mixtures with inert gases was investigated in order to determine cross sections for the inelastic collisions leading to excitation transfer between the 4 2P1/2 and 4 2P3/2 states in potassium. The study was carried out at potassium vapor pressures of about 10−6 mm Hg, which were not formerly accessible to such experiments, and in the absence of radiation trapping. The cross sections Q1(4 2P1/2 → 42P3/2) and Q2(4 2P1/2 → 4 2P3/2) are as follows: for K–K collisions: 370 and 250 Å2; for K–He: 60 and 41 Å2; for K–Ne: 14 and 9.5 Å2; for K–A: 37 and 22 Å2; for K–Kr: 61 and 41 Å2; for K–Xe: 104 and 72 Å2. These values supersede those published previously (Chapman, Krause, and Brockman 1964; Chapman and Krause 1965). The cross sections for collisions between potassium and inert gas atoms do not increase monotonically with the polarizabilities of the inert gases but behave similarly to the electron – inert gas elastic scattering cross sections. This behavior is interpreted on the basis of a semiclassical model for the interaction, which involves overlap forces.


1974 ◽  
Vol 52 (11) ◽  
pp. 945-949 ◽  
Author(s):  
I. N. Siara ◽  
H. S. Kwong ◽  
L. Krause

The cross sections for 72P1/2–72P3/2 excitation transfer in cesium, induced in collisions with noble gas atoms, have been determined in a series of sensitized fluorescence experiments at temperatures ranging from 405 to 630 K. The cross sections which lie in the range 0.06–20 Å2, exhibit a temperature dependence which, however, is less pronounced than in the more adiabatic case of the cesium resonance doublet.


1980 ◽  
Vol 58 (10) ◽  
pp. 1500-1506 ◽  
Author(s):  
P. Skalinski ◽  
L. Krause

The total cross sections for disorientation (σ1) and disalignment (σ2) of 42P3/2 potassium atoms, induced in collisions with the ground-state atoms, have been determined using a modified Zeeman scanning method. Potassium vapor at densities of the order of 1011 cm−3, contained in a fluorescence cell located in a kilogauss variable magnetic field, was irradiated with circularly polarized 7665 Å resonance radiation emitted from a discharge lamp located in a constant field of 5.4 kG. Scans of the variable field permitted selective excitation of single Zeeman components in the absorbing vapor. The σ+ and σ− components of the resulting resonance fluorescence emitted parallel to the scanning field were monitored in relation to the vapor density, as were the π and σ components emitted in the perpendicular direction. As the vapor density increased so did the frequency of the collisions which caused transfers among the Zeeman states in the vapor and thus disorientation and disalignment. The observed dependence of circular and linear depolarization of the fluorescence on the potassium density yielded the cross sections σ1 = 17 × 10−12 cm2 and σ2 = 21 × 10−2 cm2, corrected for imprisonment of radiation.


1969 ◽  
Vol 47 (2) ◽  
pp. 223-226 ◽  
Author(s):  
E. S. Hrycyshyn ◽  
L. Krause

The total cross sections for collisions between excited potassium and unexcited rubidium atoms, leading to the transfer of excitation between the 42P states in potassium, have been determined in a sensitized fluorescence experiment. The experiments were carried out at partial pressures of potassium vapor lower than 10−5 mm Hg, at which the imprisonment of resonance radiation may be disregarded. The cross sections Q12″ (42P1/2 → 42P3/2) and Q21″ (42P1/2 ← 42P3/2) equal 260 Å2 and 175 Å2, respectively, and are in the ratio predicted by the principle of detailed balancing.


1972 ◽  
Vol 50 (16) ◽  
pp. 1826-1832 ◽  
Author(s):  
I. Siara ◽  
E. S. Hrycyshyn ◽  
L. Krause

The cross sections for excitation transfer between the 62P fine-structure substates in rubidium, induced in collisions with noble gas atoms, have been determined in a series of sensitized fluorescence experiments. Mixtures of rubidium vapor and noble gases at pressures varying in the range 0–5 Torr were irradiated with each component of the second 2P rubidium doublet in turn and the following cross sections for 2P mixing were obtained from measurements of sensitised-to-resonance fluorescent intensity ratios. Rb–He: Q12(2P1/2 → 2P3/2) = 29.3 Å2; Q21(2P1/2 ← 2P3/2) = 19.0 Å2. Rb–Ne: Q12 = 10.3 Å2; Q21 = 6.4 Å2. Rb–Ar: Q12 = 24.0 Å2; Q21 = 14.9 Å2. Rb–Kr: Q12 = 23.2 Å2; Q21 = 14.6 Å2. Rb–Xe: Q12 = 43.9 Å2; Q21 = 27.7 Å2 In their dependence on the magnitude of the fine-structure splitting, the values are consistent with previously determined cross sections for mixing in the first and third 2P doublets of alkali atoms.


1974 ◽  
Vol 52 (20) ◽  
pp. 1956-1960 ◽  
Author(s):  
B. Niewitecka ◽  
T. Skaliński ◽  
L. Krause

The cross sections for disorientation of 32P1/2 sodium atoms, induced in collisions with noble gas atoms, have been determined by following the depolarization of Na–D1 resonance fluorescence in relation to noble gas pressure. Sodium vapor at low density, mixed with a noble gas in a fluorescence cell, was irradiated with circularly polarized D1 resonance radiation and the resulting D1 resonance fluorescence, observed in an approximately backward direction, was analyzed with respect to circular polarization. The variation of the degree of polarization with gas pressure was interpreted on the basis of a 'J randomization' model for the collisions, and yielded the following disorientation cross sections which are appropriately corrected for effects due to nuclear spin. Na–He: 28.1 ± 4.0 Å2; Na–Ne: 27.8 ± 4.0 Å2; Na–Ar: 57.0 ± 8.0 Å2; Na–Kr: 78.0 ± 10 Å2; Na–Xe: 87.0 ± 13 Å2.


1964 ◽  
Vol 42 (3) ◽  
pp. 535-547 ◽  
Author(s):  
G. D. Chapman ◽  
L. Krause ◽  
I. H. Brockman

Sensitized fluorescence in potassium vapor at pressures between 10−5 mm Hg and 10−1 mm Hg was investigated to determine the cross sections for collisions of the second kind between unexcited and excited potassium atoms. An idealized fluorescence tube was used in the experiment and the fluorescent light was analyzed with a photoelectric recording spectrometer. The collision cross sections at low vapor pressures, where imprisonment of radiation is absent, are identical for both the 42P1/2 → 42P3/2 and 42P1/2 ← 42P3/2 transitions and equal 6.6 × 10−12 cm2 at 2 × 10−4 mm Hg. The experimental results are interpreted on the basis of new selection rules for sensitized fluorescence.


Sign in / Sign up

Export Citation Format

Share Document