Analyse vibrationnelle et rotationnelle de la transition A2Σ+–X2Πi de la molécule 63Cu80Se

1976 ◽  
Vol 54 (16) ◽  
pp. 1664-1668 ◽  
Author(s):  
Y. Lefebvre ◽  
J. L. Bocquet

High dispersion vibrational and rotational analysis of a 63Cu80Se visible band system has been performed.The presence of a splitting proportional to [Formula: see text] in each observed subsystem indicates that these bands arise from a transition from a 2Σ state (with γ-type doubling) to a 2Π state. This hypothesis allows us to derive specific molecular constants of these two states.


1962 ◽  
Vol 40 (9) ◽  
pp. 1077-1084 ◽  
Author(s):  
T. A. Prasada Rao ◽  
P. Tiruvenganna Rao

A rotational analysis of five bands, (1,0), (0,0), (0,1), (0.2), and (0,3), of the visible band system A of BiF has been carried out by photographing the bands under high dispersion (1.25 Å/mm). The analysis has shown that the bands arise from a 0+(3Σ−)–0+(3Σ−) transition. The rotational constants for the upper and lower states of the system are obtained.



1972 ◽  
Vol 50 (2) ◽  
pp. 171-184 ◽  
Author(s):  
R. Colin ◽  
M. Carleer ◽  
F. Prevot

A rotational analysis has been performed on the 0–0, 1–1, 1–0, and 2–1 bands of the A2Π–X2Σ+ band system of the BeCl molecule photographed at high resolution in emission from a microwave discharge. The following principal molecular constants have been obtained.[Formula: see text]Inspection of the low J value lines shows that the A2Π state is a regular state derived from the electronic configuration σ2σ2π4π although the Λ-doubling constants p and q are of opposite sign.



1962 ◽  
Vol 40 (4) ◽  
pp. 412-422 ◽  
Author(s):  
P. Ramakoteswara Rao ◽  
R. K. Asundi ◽  
J. K. Brody

The F–X band system of Cu65Cl35 extending from 3700 to 4200 Å has been photographed in emission under high resolution. Rotational analysis of the (3,0), (2,0), (1,0), (0,0), (0,1), and (0,2) bands of the system has been made. The electronic transition involved is found to be 1Π–1Σ. The Λ-type doubling in the 1Π state is negligible. The principal molecular constants obtained are as follows (cm−1 units)[Formula: see text]



1959 ◽  
Vol 37 (2) ◽  
pp. 136-143 ◽  
Author(s):  
Nand Lal Singh

The fine structures of three of the β bands of PO which occur near 3200 Å have been analyzed. The analysis shows that the upper state of this band system is a 2Σ and not a 2Π state as previously believed. The rotational constants of both electronic states have been determined and it is found that the ground state constants, previously determined from the γ bands, are incorrect.



1974 ◽  
Vol 52 (9) ◽  
pp. 813-820 ◽  
Author(s):  
René Stringat ◽  
Jean-Paul Bacci ◽  
Marie-Hélène Pischedda

The strongly perturbed 1Π–X1Σ+ system of C80Se has been observed in the emission spectrum of a high frequency discharge through selenium and carbon traces in a neon atmosphere. The analysis of five bands yields, for the molecular constants of the ground state, the values Be″ = 0.5750 cm−1, [Formula: see text], αe″ = 0.00379 cm−1, re″ = 1.676 Å, ΔG″(1/2) = 1025.64 cm−1, and ΔG″(3/2) = 1015.92 cm−1. The numerous perturbations in the 1Π state prohibit the simple evaluation of the constants of the perturbed state and of the perturbing ones.



1966 ◽  
Vol 44 (10) ◽  
pp. 2251-2258 ◽  
Author(s):  
A. E. Douglas ◽  
W. E. Jones

If argon mixed with a small amount of NF3 is pumped rapidly through a mild discharge, a green glow is observed downstream from the discharge. This emission has been photographed with a high dispersion spectrograph and found to consist of a strong band with a head at 5 288 Å and a number of weaker bands. A rotational analysis of the bands has shown that they are the b1Σ+–X3Σ− bands of the NF molecule. The constants of the two states have been determined and it is found that for the ground state, ωe = 1 141.37 cm−1 and re = 1.317 3 Å.



1985 ◽  
Vol 63 (7) ◽  
pp. 997-1004 ◽  
Author(s):  
K. Brabaharan ◽  
J. A. Coxon ◽  
A. Brian Yamashita

The 0–0, 1–1, and 2–2 bands of the A2Π ← X2Σ system of TiN have been recorded using the technique of laser-excitation spectroscopy. Molecular constants have been obtained from direct least squares fits of the measured line positions of individual bands. The fitted constants confirm and extend previous determinations; for the A2Π state, some of the constants show unusually large variations with ν, in accord with the already known perturbation of this state in the ν = 0 level.



1982 ◽  
Vol 60 (2) ◽  
pp. 109-116 ◽  
Author(s):  
C. Athénour ◽  
J.-L. Féménias ◽  
T. M. Dunn

From new spectra and by the use of a better computation procedure it has been possible to improve the rotational analysis of the (0,0) band of the red system of TiN. In particular, the spin doubling of the lower 2Σ state has been resolved and two new perturbations have been identified in the 2Π state. The inclusion of high values of J yields more accurate molecular constants.



1975 ◽  
Vol 53 (14) ◽  
pp. 1321-1326 ◽  
Author(s):  
M. Carleer ◽  
M. Herman ◽  
R. Colin

A rotational analysis has been performed on the 0–0 band of the A2Π–X2Σ+ transition of the BeBr molecule photographed at high resolution in emission from a beryllium hollow cathode in the presence of bromine vapor. The following principal molecular constants have been determined:[Formula: see text]



1942 ◽  
Vol 20a (6) ◽  
pp. 71-82 ◽  
Author(s):  
A. E. Douglas ◽  
G. Herzberg

In a discharge through helium, to which a small trace of benzene vapour is added, a new band system of the type 1Π – 1Σ is found which is shown to be due to the CH+ molecule. The R(0) lines of the 0–0, 1–0, and 2–0 bands of the new system agree exactly with the hitherto unidentified interstellar lines 4232.58, 3957.72, 3745.33 Å, thus proving that CH+ is present in interstellar space. At the same time this observation of the band system in absorption shows that the lower state 1Σ is the ground state of the CH+ molecule. The new bands are closely analogous to the 1II – 1Σ+ BH bands. The analysis of the bands leads to the following vibrational and rotational constants of CH+ in its ground state: [Formula: see text], Be″ = 14.1767, αe″ = 0.4898 cm.−1. The internuclear distance is re″ = 1.1310∙10−8 cm. (for further molecular constants see Table V). From the vibrational levels of the upper 1Π state the heat of dissociation of CH+ can be obtained within fairly narrow limits: D0(CH+) = 3.61 ± 0.22 e.v. From this value the ionization potential of CH is derived to be I(CH) = 11.13 ± 0.22 e.v. The bearing of this value on recent work on ionization and dissociation of polyatomic molecules by electron impacts is briefly discussed.



Sign in / Sign up

Export Citation Format

Share Document