Lineshapes and dipole moments in collision-induced absorption

1981 ◽  
Vol 59 (10) ◽  
pp. 1544-1554 ◽  
Author(s):  
George Birnbaum ◽  
Michael S. Brown ◽  
Lothar Frommhold

Wave mechanical lineshapes of collision-induced absorption spectra are computed for binary mixtures of argon with helium, neon, and krypton using theoretical dipole moments as input. Comparison with measured spectra shows satisfactory agreement except for the neon–argon mixture, for which either theory or measurement is seen to be in substantial error. Empirical models of the collision-induced dipole moment which reproduce the experimental spectra more closely than the fundamental theory are also given. Best agreement between computed and experimental lineshapes is obtained when potential models which are accurate in the repulsive region are used.

2016 ◽  
Vol 230 (8) ◽  
Author(s):  
Mohamed S. A. El-Kader

AbstractQuantum mechanical lineshapes of collision-induced absorption (CIA) at room temperature are computed for gaseous molecular oxygen using theoretical values for induced dipole moments and new isotropic interatomic potential as input. Comparison with measured spectra of the rototranslational collision-induced absorption shows good agreement over the full range of frequencies. Empirical models of the dipole moment which reproduce the experimental spectra and the first two spectral moments more closely than the fundamental theory are also given. The quality of the present potential has been checked by comparing between calculated and experimental thermo-physical and transport properties over a wide temperature range, which are found to be in good agreement.


2021 ◽  
Vol 21 (4) ◽  
pp. 1063-1078
Author(s):  
M.S.A. El-Kader ◽  
G. Maroulis ◽  
T. Bancewicz

Quantum mechanical lineshapes of collision-induced absorption (CIA) at different temperatures are computed for gaseous mixtures of molecular nitrogen and methane using theoretical values for the induced dipole moments and intermolecular potential as input. Comparison with theoretical absorption spectra shows satisfactory agreement. An empirical model of the dipole moment which reproduces the experimental spectra and the first three spectral moments more closely than the fundamental theory, is also presented. Good agreement between computed and experimental absorption lineshapes is obtained when a potential model which is constructed from the thermophysical and transport properties is used.


Author(s):  
M.S.A. El-Kader ◽  
G. Maroulis

We present a method for the construction of a one-adjustable-parameter empirical model for the induced dipole moment. The method is based on classical physics principles and relies on the first three spectral moments of the collision-induced absorption spectra at various temperatures and new interaction potentials. In this work it is applied to the spectra of He-Ar mixtures. Our values are in good agreement with the available ab initio data. The profiles calculated with these models at various temperatures are in excellent agreement with experiment.


1973 ◽  
Vol 51 (23) ◽  
pp. 2455-2458 ◽  
Author(s):  
J. Courtenay Lewis

We show that, within the limits of the theory of intercollisional interference effects developed for collision-induced absorption by a Lorentz gas in paper I of this series, an intercollisional interference minimum which goes precisely to zero implies that the induced dipole moment is exactly proportional to the intermolecular force.


1971 ◽  
Vol 49 (22) ◽  
pp. 2870-2873 ◽  
Author(s):  
U. Buontempo ◽  
S. Cunsolo ◽  
G. Jacucci

We have measured the far infrared absorption spectra of dilute solutions of helium and neon in liquid argon arising from collision-induced electric dipole moments. The two spectra consist of broad bands similar in shape peaked at 70 cm−1 (Ne–A) and 120 cm−1 (He–A). They are characterized by a long high-frequency tail and a rapid fall at low frequency. The reduced line shapes are compared taking into account the difference in the duration of the collision-induced dipole moment. At high frequencies the two curves are similar to those observed in the gas phase. Their departure from the gaseous spectra at low frequencies is attributed to a negative correlation of the dipole moment induced in successive repulsive interactions.


1971 ◽  
Vol 49 (7) ◽  
pp. 837-847 ◽  
Author(s):  
S. L. Brenner ◽  
D. A. McQuarrie

The observed far-infrared collision-induced absorption of helium–argon mixtures is used to determine the parameters in an induced-dipole moment function of the form[Formula: see text]It is shown that, with this form of μ(r), the values of the constants μo, ρ, and c7 that are necessary to fit the first two moments of the observed absorption contour are in disagreement with the available theoretical values of these constants. Possible explanations for this disagreement are discussed in the paper. Finally, it is shown that if μ(r) were known, it is possible to obtain an excellent representation of the entire absorption spectrum from a knowledge of only the first three moments, which are easily calculated equilibrium quantities.


2008 ◽  
Vol 73 (6-7) ◽  
pp. 873-897 ◽  
Author(s):  
Vladimír Špirko ◽  
Ota Bludský ◽  
Wolfgang P. Kraemer

The adiabatic three-dimensional potential energy surface and the corresponding dipole moment surface describing the ground electronic state of HN2+ (Χ1Σ+) are calculated at different levels of ab initio theory. The calculations cover the entire bound part of the potential up to its lowest dissociation channel including the isomerization barrier. Energies of all bound vibrational and low-lying ro-vibrational levels are determined in a fully variational procedure using the Suttcliffe-Tennyson Hamiltonian for triatomic molecules. They are in close agreement with the available experimental numbers. From the dipole moment function effective dipoles and transition moments are obtained for all the calculated vibrational and ro-vibrational states. Statistical tools such as the density of states or the nearest-neighbor level spacing distribution (NNSD) are applied to describe and analyse general patterns and characteristics of the energy and dipole results calculated for the massively large number of states of the strongly bound HN2+ ion and its deuterated isotopomer.


2013 ◽  
Vol 28 (29) ◽  
pp. 1350147 ◽  
Author(s):  
TAKESHI FUKUYAMA ◽  
ALEXANDER J. SILENKO

General classical equation of spin motion is explicitly derived for a particle with magnetic and electric dipole moments in electromagnetic fields. Equation describing the spin motion relative to the momentum direction in storage rings is also obtained.


Sign in / Sign up

Export Citation Format

Share Document