Energy bounds for the spiked harmonic oscillator

1995 ◽  
Vol 73 (7-8) ◽  
pp. 493-496 ◽  
Author(s):  
Richard L. Hall ◽  
Nasser Saad

A three-parameter variational trial function is used to determine an upper bound to the ground-state energy of the spiked harmonic-oscillator Hamiltonian [Formula: see text]. The entire parameter range λ > 0 and α ≥ 1 is treated in a single elementary formulation. The method of potential envelopes is also employed to derive a complementary energy lower bound formula valid for all the discrete eigenvalues.

1994 ◽  
Vol 08 (10) ◽  
pp. 629-639 ◽  
Author(s):  
A. V. SOLDATOV

The ground-state energy of the Fröhlich polaron model in a magnetic field is investigated by means of the Wick symbols formalism. The upper bound on the ground-state energy is derived which is valid for all values of magnetic field and coupling strength.


1993 ◽  
Vol 07 (27) ◽  
pp. 1773-1779 ◽  
Author(s):  
N.N. BOGOLUBOV ◽  
A.V. SOLDATOV

We present a very simple method to derive the upper bound of the ground-state energy for the Fröhlich polaron theory. The obtained bounds are proved to be uniform for all values of the interaction parameter.


2008 ◽  
Vol 78 (5) ◽  
Author(s):  
László Erdős ◽  
Benjamin Schlein ◽  
Horng-Tzer Yau

Author(s):  
P. Bérard ◽  
B. Helffer

Given a bounded open set in (or in a Riemannian manifold), and a partition of Ω by k open sets ω j , we consider the quantity , where λ ( ω j ) is the ground state energy of the Dirichlet realization of the Laplacian in ω j . We denote by ℒ k ( Ω ) the infimum of over all k -partitions. A minimal k -partition is a partition that realizes the infimum. Although the analysis of minimal k -partitions is rather standard when k =2 (we find the nodal domains of a second eigenfunction), the analysis for higher values of k becomes non-trivial and quite interesting. Minimal partitions are in particular spectral equipartitions, i.e. the ground state energies λ ( ω j ) are all equal. The purpose of this paper is to revisit various properties of nodal sets, and to explore if they are also true for minimal partitions, or more generally for spectral equipartitions. We prove a lower bound for the length of the boundary set of a partition in the two-dimensional situation. We consider estimates involving the cardinality of the partition.


Quantum ◽  
2017 ◽  
Vol 1 ◽  
pp. 6 ◽  
Author(s):  
Aram W. Harrow ◽  
Ashley Montanaro

We apply classical algorithms for approximately solving constraint satisfaction problems to find bounds on extremal eigenvalues of local Hamiltonians. We consider spin Hamiltonians for which we have an upper bound on the number of terms in which each spin participates, and find extensive bounds for the operator norm and ground-state energy of such Hamiltonians under this constraint. In each case the bound is achieved by a product state which can be found efficiently using a classical algorithm.


Sign in / Sign up

Export Citation Format

Share Document