Target reliability based design optimization of anchored cantilever sheet pile walls

2008 ◽  
Vol 45 (4) ◽  
pp. 535-548 ◽  
Author(s):  
B. Munwar Basha ◽  
G. L. Sivakumar Babu

In this study, the stability of anchored cantilever sheet pile wall in sandy soils is investigated using reliability analysis. Targeted stability is formulated as an optimization problem in the framework of an inverse first order reliability method. A sensitivity analysis is conducted to investigate the effect of parameters influencing the stability of sheet pile wall. Backfill soil properties, soil – steel pile interface friction angle, depth of the water table from the top of the sheet pile wall, total depth of embedment below the dredge line, yield strength of steel, section modulus of steel sheet pile, and anchor pull are all treated as random variables. The sheet pile wall system is modeled as a series of failure mode combination. Penetration depth, anchor pull, and section modulus are calculated for various target component and system reliability indices based on three limit states. These are: rotational failure about the position of the anchor rod, expressed in terms of moment ratio; sliding failure mode, expressed in terms of force ratio; and flexural failure of the steel sheet pile wall, expressed in terms of the section modulus ratio. An attempt is made to propose reliability based design charts considering the failure criteria as well as the variability in the parameters. The results of the study are compared with studies in the literature.

1996 ◽  
Vol 33 (5) ◽  
pp. 815-821 ◽  
Author(s):  
A B Schriver ◽  
A J Valsangkar

Recently, the limit states approach using factored strength has been recommended in geotechnical design. Some recent research has indicated that the application of limit states design using recommended load and strength factors leads to conservative designs compared with the conventional methods. In this study the influence of sheet pile wall geometry, type of water pressure distribution, and different methods of analysis on the maximum bending moment and achor rod force are presented. Recommendations are made to make the factored strength design compatible with conventional design. Key words: factored strength, working stress design, ultimate limit state design, anchored sheet pile wall, bending moment, anchor rod force.


2015 ◽  
Vol 744-746 ◽  
pp. 1180-1183 ◽  
Author(s):  
Hong Wang ◽  
Peng Liu ◽  
Xiang Liu ◽  
Jin Gang Duan

With the development of steel sheet pile bulkhead gradually toward large-scale and deep water, natural conditions become worse and structural load rating continues to improve, design and construction of steel sheet pile bulkhead needs higher requirements. Then the stability of sheet pile bulkhead under horizontal loads becomes particularly prominent. This paper presents the displacement and stress of steel sheet pile bulkhead structure under different horizontal loads using ANSYS, which provide academic support for the design and construction of steel sheet pile bulkhead.


2011 ◽  
Vol 142 ◽  
pp. 243-246
Author(s):  
Rong Jian Li ◽  
Hao Duan ◽  
Wen Zheng ◽  
Hai Tao Li

The non-uniform distribution of matric suction in the unsaturated soil has a great impact on the stability of the unsaturated soil foundation pit. By means of the strength reduction finite element method, the stability of the unsaturated soil foundation pit reinforced with the cement-mixed sheet pile wall was analyzed. The overall safety factor of the unsaturated soil foundation pit reinforced with the cement-mixed sheet pile wall is greatly reduced and the position of potential sliding surface goes upward with the gradually decreasing of matric suction. With the constant height of the cement-mixed sheet pile wall, the shallower the embedding depth of the cement-mixed sheet pile wall is, the smaller the safety factor of the foundation pit slope is. The results show that the safety factor of the overall stability of the unsaturated soil foundation pit decreases with the deep excavation and the gradually decreasing of the matric suction.


2016 ◽  
Vol 7 ◽  
pp. 1-12 ◽  
Author(s):  
Anders Prästings ◽  
Stefan Larsson ◽  
Rasmus Müller

1991 ◽  
Vol 28 (6) ◽  
pp. 812-817 ◽  
Author(s):  
A. J. Valsangkar ◽  
A. B. Schriver

Recently, the limit states design approach has been recommended in geotechnical design. The Canadian Foundation Engineering Manual (1985) details the new approach for design of foundations, slopes, and retaining structures. Some recent research has indicated that the use of the limit states design approach leads to conservative designs when compared with conventional methods of design. Results of a parametric study are presented in this paper. The study investigated the influence of sheet pile wall geometry, type of water-pressure distribution considered, and different methods of analysis on the required depth of penetration of an anchored sheet pile wall. Modifications are suggested to make the new design method compatible with the conventional methods of design. Key words: factor of safety, working stress design, ultimate limit states design, anchored sheet pile wall.


Ports 2010 ◽  
2010 ◽  
Author(s):  
M. R. Ramsden ◽  
T. F. Griffiths

Sign in / Sign up

Export Citation Format

Share Document