A Static Solution for the Problem of the Stability of a Smooth Freestanding Sheet Pile Wall

2017 ◽  
Vol 54 (4) ◽  
pp. 211-215 ◽  
Author(s):  
A.M. Karaulov ◽  
K.V. Korolev
2011 ◽  
Vol 142 ◽  
pp. 243-246
Author(s):  
Rong Jian Li ◽  
Hao Duan ◽  
Wen Zheng ◽  
Hai Tao Li

The non-uniform distribution of matric suction in the unsaturated soil has a great impact on the stability of the unsaturated soil foundation pit. By means of the strength reduction finite element method, the stability of the unsaturated soil foundation pit reinforced with the cement-mixed sheet pile wall was analyzed. The overall safety factor of the unsaturated soil foundation pit reinforced with the cement-mixed sheet pile wall is greatly reduced and the position of potential sliding surface goes upward with the gradually decreasing of matric suction. With the constant height of the cement-mixed sheet pile wall, the shallower the embedding depth of the cement-mixed sheet pile wall is, the smaller the safety factor of the foundation pit slope is. The results show that the safety factor of the overall stability of the unsaturated soil foundation pit decreases with the deep excavation and the gradually decreasing of the matric suction.


2008 ◽  
Vol 45 (4) ◽  
pp. 535-548 ◽  
Author(s):  
B. Munwar Basha ◽  
G. L. Sivakumar Babu

In this study, the stability of anchored cantilever sheet pile wall in sandy soils is investigated using reliability analysis. Targeted stability is formulated as an optimization problem in the framework of an inverse first order reliability method. A sensitivity analysis is conducted to investigate the effect of parameters influencing the stability of sheet pile wall. Backfill soil properties, soil – steel pile interface friction angle, depth of the water table from the top of the sheet pile wall, total depth of embedment below the dredge line, yield strength of steel, section modulus of steel sheet pile, and anchor pull are all treated as random variables. The sheet pile wall system is modeled as a series of failure mode combination. Penetration depth, anchor pull, and section modulus are calculated for various target component and system reliability indices based on three limit states. These are: rotational failure about the position of the anchor rod, expressed in terms of moment ratio; sliding failure mode, expressed in terms of force ratio; and flexural failure of the steel sheet pile wall, expressed in terms of the section modulus ratio. An attempt is made to propose reliability based design charts considering the failure criteria as well as the variability in the parameters. The results of the study are compared with studies in the literature.


1996 ◽  
Vol 33 (5) ◽  
pp. 815-821 ◽  
Author(s):  
A B Schriver ◽  
A J Valsangkar

Recently, the limit states approach using factored strength has been recommended in geotechnical design. Some recent research has indicated that the application of limit states design using recommended load and strength factors leads to conservative designs compared with the conventional methods. In this study the influence of sheet pile wall geometry, type of water pressure distribution, and different methods of analysis on the maximum bending moment and achor rod force are presented. Recommendations are made to make the factored strength design compatible with conventional design. Key words: factored strength, working stress design, ultimate limit state design, anchored sheet pile wall, bending moment, anchor rod force.


1981 ◽  
Vol 18 (4) ◽  
pp. 566-572 ◽  
Author(s):  
N. R. Morgenstern ◽  
D. C. Sego

The construction of an underpass in the City of Edmonton required the temporary relocation of the CNR main-line prior to the construction of a permanent bridge. The line was placed close to the underpass excavation which was supported by a tie-back sheet pile wall. Because of the stringent requirements associated with the presence of the railway line, the supports were designed on a conservative basis and observations of tie-back loads were taken over a period of 7 months.This note presents the observations of tie-back loads from January to July, 1977. Following installation in accordance with the design requirements, substantial fluctuations in tie-back load were observed for about 3 months. Then the loads fell off gradually to about 50% of the originally applied values. The variation of the load with time bears a strong correlation with average air temperature and is accounted for by the alternate freezing and thawing of the ground adjacent to the sheet pile wall. The ultimate decline in load is attributed to relaxation of the soil behind the wall during spring thaw. The case history draws attention to special requirements associated with interpretation of earth pressure measurements during winter con struction.


2015 ◽  
Vol 24 (05) ◽  
pp. 1550034 ◽  
Author(s):  
Piyali Bhar ◽  
Ayan Banerjee

In this paper, we construct thin-shell wormholes in (2 + 1)-dimensions from noncommutative BTZ black hole by applying the cut-and-paste procedure implemented by Visser. We calculate the surface stresses localized at the wormhole throat by using the Darmois–Israel formalism and we find that the wormholes are supported by matter violating the energy conditions. In order to explore the dynamical analysis of the wormhole throat, we consider that the matter at the shell is supported by dark energy equation of state (EoS) p = ωρ with ω < 0. The stability analysis is carried out of these wormholes to linearized spherically symmetric perturbations around static solutions. Preserving the symmetry we also consider the linearized radial perturbation around static solution to investigate the stability of wormholes which was explored by the parameter β (speed of sound).


ce/papers ◽  
2018 ◽  
Vol 2 (2-3) ◽  
pp. 731-736
Author(s):  
Aykut OZPOLAT ◽  
H. Suha AKSOY ◽  
Mesut GOR

Sign in / Sign up

Export Citation Format

Share Document