Lateral resistance and deflection of rigid walls and piles in layered soils

1981 ◽  
Vol 18 (2) ◽  
pp. 159-170 ◽  
Author(s):  
G. G. Meyerhof ◽  
S. K. Mathur ◽  
A. J. Valsangkar

The ultimate lateral resistance and the lateral deflection at working loads of rigid vertical walls and piles with a free head subjected to horizontal load and embedded in two-layered soils of sand and clay have been investigated. Part 1 deals with the behaviour of rigid walls, and the analyses are compared with the results of model wall tests in layered soils. Part 2 treats the behaviour of rigid piles, and the analyses are compared with the results of model tests on piles and pile groups in layered soils and some field case records.

1988 ◽  
Vol 25 (3) ◽  
pp. 511-522 ◽  
Author(s):  
G. G. Meyerhof ◽  
V. V. R. N. Sastry ◽  
A. S. Yalcin

The ultimate lateral resistance and the groundline lateral deflections under working loads of freestanding single model piles and small pile groups, of various materials and different embedded lengths, subjected to horizontal load have been investigated. The test results of piles of various stiffnesses in sand and clay are compared with theoretical analyses based on the concept of an effective embedment depth in terms of the behaviour of equivalent rigid piles. Key words: clay, piles, displacements, lateral load, lateral resistance, pile stiffness, sand, ultimate load.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Desen Kong ◽  
Meixu Deng ◽  
Yazhou Li

In order to investigate the bearing characteristics of inclined straight alternating pile groups under vertical and horizontal loads, the indoor model test of 2 × 2 inclined straight alternating pile groups with two layers of soil on low pile caps was carried out, the manufacturing method of inclined straight alternating pile groups was studied, and the test scheme was reasonably designed. In the test, the fast maintenance load method was used to simulate vertical loads, and the horizontal force loading frame was designed to simulate horizontal loads. The experimental data were obtained by pasting strain gauges on the pile body, and the computer was used to process the data according to the mechanical formula. The distribution of axial force, lateral friction resistance, and end resistance of each characteristic pile of the pile group foundation was obtained, and the settlement law of the pile group was analyzed. At the same time, combined with the test data and the existing theories, the interaction mechanism between pile caps, piles, and soil of inclined and straight alternating pile groups is discussed. The load sharing characteristics between piles and pile caps are analyzed, and the horizontal load is in the proportion between straight piles and inclined piles. The stress characteristics of straight piles and pile groups in the pile group system are compared and analyzed, and some valuable conclusions are obtained.


Author(s):  
Michael C. McVay ◽  
Limin Zhang ◽  
Sangjoon Han ◽  
Peter Lai

A series of lateral load tests were performed on 3×3 and 4×4 pile groups in loose and medium-dense sands in the centrifuge with their caps located at variable heights to the ground surface. Four cases were considered: Case 1, pile caps located above the ground surface; Case 2, bottom of pile cap in contact with the ground surface; Case 3, top of pile cap at the ground surface elevation; and Case 4, top of pile cap buried one cap thickness below ground surface. All tests with the exception of Case 1 of the 4×4 group had their pile tips located at the same elevation. A special device, which was capable of both driving the piles and raining sand on the group in flight, had to be constructed to perform the tests without stopping the centrifuge (spinning at 45 g). The tests revealed that lowering the pile cap elevation increased the lateral resistance of the pile group anywhere from 50 to 250 percent. The experimental results were subsequently modeled with the bridge foundation-superstructure finite element program FLPIER, which did a good job of predicting all the cases for different load levels without the need for soil–pile cap interaction springs (i.e., p-y springs attached to the cap). The analyses suggest that the increase in lateral resistance with lower cap elevations may be due to the lower center of rotation of the pile group. However, it should be noted that this study was for pile caps embedded in loose sand and not dense sands or at significant depths. The experiments also revealed a slight effect for the case of the pile cap embedded in sand with a footprint wider than the pile row. In that case the size of the passive soil wedge in front of the pile group, and consequently the group’s lateral resistance, increased.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Mahdy Khari ◽  
Khairul Anuar Kassim ◽  
Azlan Adnan

Grouped and single pile behavior differs owing to the impacts of the pile-to-pile interaction. Ultimate lateral resistance and lateral subgrade modulus within a pile group are known as the key parameters in the soil-pile interaction phenomenon. In this study, a series of experimental investigation was carried out on single and group pile subjected to monotonic lateral loadings. Experimental investigations were conducted on twelve model pile groups of configurations 1 × 2, 1 × 3, 2 × 2, 3 × 3, and 3 × 2 for embedded length-to-diameter ratiol/d= 32 into loose and dense sand, spacing from 3 to 6 pile diameter, in parallel and series arrangement. The tests were performed in dry sand from Johor Bahru, Malaysia. To reconstruct the sand samples, the new designed apparatus, Mobile Pluviator, was adopted. The ultimate lateral load is increased 53% in increasing ofs/dfrom 3 to 6 owing to effects of sand relative density. An increasing of the number of piles in-group decreases the group efficiency owing to the increasing of overlapped stress zones and active wedges. A ratio ofs/dmore than6dis large enough to eliminate the pile-to-pile interaction and the group effects. It may be more in the loose sand.


Sign in / Sign up

Export Citation Format

Share Document