Model for the prediction of shear strength with respect to soil suction

1996 ◽  
Vol 33 (3) ◽  
pp. 379-392 ◽  
Author(s):  
S K Vanapalli ◽  
D G Fredlund ◽  
D E Pufahl ◽  
A W Clifton

Experimental studies on unsaturated soils are generally costly, time-consuming, and difficult to conduct. Shear strength data from the research literature suggests that there is a nonlinear increase in strength as the soil desaturates as a result of an increase in matric suction. Since the shear strength of an unsaturated soil is strongly related to the amount of water in the voids of the soil, and therefore to matric suction, it is postulated that the shear strength of an unsaturated soil should also bear a relationship to the soil-water characteristic curve. This paper describes the relationship between the soil-water characteristic curve and the shear strength of an unsaturated soil with respect to matric suction. Am empirical, analytical model is developed to predict the shear strength in terms of soil suction. The formulation makes use of the soil-water characteristic curve and the saturated shear strength parameters. The results of the model developed for predicting the shear strength are compared with experimental results for a glacial till. The shear strength of statically compacted glacial till specimens was measured using a modified direct shear apparatus. Specimens were prepared at three different water contents and densities (i.e., corresponding to dry of optimum, and wet of optimum conditions). Various net normal stresses and matric suctions were applied to the specimens. There is a good correlation between the predicted and measured values of shear strength for the unsaturated soil. Key words: soil-water characteristic curve, shear strength, unsaturated soil, soil suction, matric suction.

1999 ◽  
Vol 36 (2) ◽  
pp. 363-368 ◽  
Author(s):  
Daud W Rassam ◽  
David J Williams

A relationship describing the shear-strength profile of a desiccating soil deposit is essential for the purpose of analysis, especially when a numerical method is adopted where each zone in a discretised grid is assigned an elevation-dependent shear-strength value. The matric-suction profile of a desiccating soil deposit is nonlinear. Up to the air-entry value, an increase in matric suction is associated with a linear increase in shear strength. Beyond air entry, as the soil starts to desaturate, a nonlinear increase in shear strength occurs. The soil-water characteristic curve is stress dependent, as is the shear-strength gain as matric suction increases. In this paper, a three-dimensional, nonlinear regression analysis showed that a power-additive function is suitable to describe the variation of the shear strength of unsaturated soils with matric suction. The proposed function incorporates the effect of normal stress on the contribution of matric suction to the shear strength.Key words: air-entry value, matric suction, nonlinear regression, soil-water characteristic curve, tailings, unsaturated shear strength.


1996 ◽  
Vol 33 (3) ◽  
pp. 440-448 ◽  
Author(s):  
D G Fredlund ◽  
Anqing Xing ◽  
M D Fredlund ◽  
S L Barbour

The measurement of soil parameters, such as the permeability and shear strength functions, used to describe unsaturate soil behaviour can be expensive, difficult, and often impractical to obtain. This paper proposes a model for predicting the shear strength (versus matric suction) function of unsaturated soils. The prediction model uses the soil-water characteristic curve and the shear strength parameters of the saturated soil (i.e., effective cohesion and effective angle of internal friction). Once a reasonable estimate of the soil-water characteristic curve is obtained, satisfactory predictions of the shear strength function can be made for the unsaturated soil. Closed-form solutions for the shear strength function of unsaturated soils are obtained for cases where a simple soil-water characteristic equation is used in the prediction model. Key words: soil suction, soil-water characteristic curve, shear strength function, unsaturated soil.


2007 ◽  
Vol 44 (3) ◽  
pp. 266-275 ◽  
Author(s):  
Trinh Minh Thu ◽  
Harianto Rahardjo ◽  
Eng-Choon Leong

Measurement of the soil-water characteristic curve (SWCC) in the laboratory is commonly conducted under zero confining pressure. However, in the field, the soil is under a confining stress. Therefore, it is important to study the effects of the confining stress on SWCC. In addition, the consolidation curve is normally generated under saturated conditions. However, the soil above the water table is usually unsaturated. Hence, it is also necessary to investigate the effects of matric suction on the characteristics of the consolidation curves. This paper presents the SWCCs under different net confining stresses and the isotropic consolidation curves under different matric suctions that describe the volume change characteristics of unsaturated soils with respect to stress state variables, net normal stress, and matric suction. A series of SWCCs was determined for statically compacted silt specimens in a triaxial cell apparatus under different net confining stresses. Isotropic consolidation tests under different matric suctions were also carried out. The results of the SWCC tests show that the air-entry value increased with increasing net confining stress. The yield points (i.e., yield suction, s0) obtained from the SWCC tests also increased with increasing net confining stress. The results of isotropic consolidation tests indicate the strong influence of matric suction on compressibility and stiffness of the compacted silt specimens.Key words: soil-water characteristic curve, isotropic consolidation, pore-water pressure, volume change, NTU mini suction probe, matric suction.


2020 ◽  
Vol 21 (4) ◽  
pp. 317-330 ◽  
Author(s):  
Qian Zhai ◽  
Harianto Rahardjo ◽  
Alfrendo Satyanaga ◽  
Guo-liang Dai ◽  
Yan-jun Du

1994 ◽  
Vol 31 (4) ◽  
pp. 533-546 ◽  
Author(s):  
D.G. Fredlund ◽  
Anqing Xing ◽  
Shangyan Huang

The coefficient of permeability for an unsaturated soil is primarily determined by the pore-size distribution of the soil and can be predicted from the soil-water characteristic curve. A general equation, which describes the soil-water characteristic curve over the entire suction range (i.e., from 0 to 106 kPa), was proposed by the first two authors in another paper. This equation is used to predict the coefficient of permeability for unsaturated soils. By using this equation, an evaluation of the residual water content is no longer required in the prediction of the coefficient of permeability. The proposed permeability function is an integration form of the suction versus water content relationship. The proposed equation has been best fit with example data from the literature where both the soil-water characteristic curve and the coefficient of permeability were measured. The fit between the data and the theory was excellent. It was found that the integration can be done from zero water content to the saturated water content. Therefore, it is possible to use the normalized water content (volumetric or gravimetric) or the degree of saturation data versus suction in the prediction of the permeability function. Key words : coefficient of permeability, soil-water characteristic curve, unsaturated soil, water content, soil suction.


2005 ◽  
Vol 42 (2) ◽  
pp. 624-631 ◽  
Author(s):  
In-Mo Lee ◽  
Sang-Gyu Sung ◽  
Gye-Chun Cho

The effect of stress state on the unsaturated shear strength of a Korean residual soil was studied using modified triaxial tests. Experimental results show that the soil-water characteristic curve and shear strength of this soil are significantly affected by the change of net normal stresses. This effect should be taken into consideration in the model to precisely describe the shear strength envelope of unsaturated soils. Thus, a new model for estimation of unsaturated shear strength is proposed using the soil-water characteristic curve and the saturated shear strength parameters.Key words: prediction model, soil-water characteristic curve, matric suction, triaxial test, unsaturated shear strength.


2011 ◽  
Vol 261-263 ◽  
pp. 1094-1098
Author(s):  
Yu You Yang ◽  
Qin Xi Zhang ◽  
Gui He Wang ◽  
Chen Liu

The test of soil water characteristic curve (SWCC) and its mathematic model are present. The SWCC can describe the relationship between unsaturated soil matric suction and water content. Matric suction is an important parameter to address when studying the engineering properties of unsaturated soil. And while the measurement of substrate attraction is a very difficult issue, it is also one of the biggest obstacles in the engineering applications of unsaturated soil. By analyzing and researching the test data of SWCC researchers can initially establish the mathematic model which is the SWCC equation. The Van Genuchten model and the Fredlund and Xing model were used to simulate better the changes between the volume water content and the matric suction. Predictions were compared with experimental results to determine the simulation capability of the model for the soil of Beijing.


2007 ◽  
Vol 44 (1) ◽  
pp. 67-77 ◽  
Author(s):  
Trinh Minh Thu ◽  
Harianto Rahardjo ◽  
Eng-Choon Leong

An elastoplastic model is proposed in this paper that incorporates the soil-water characteristic curve (SWCC) for obtaining soil parameters of unsaturated soil. The SWCC is shown to govern the rate of change in the soil parameters for the elastoplastic model with respect to matric suction. A series of isotropic consolidation tests under different matric suctions and tests for obtaining SWCC were carried out on statically compacted kaolin specimens. Nanyang Technological University (NTU) mini suction probes were installed along the height of the specimen to measure pore-water pressures during isotropic consolidation and SWCC tests. The results of isotropic consolidation tests demonstrate the strong influence of matric suction on compressibility and stiffness of the soil specimens. The experiments were also simulated using the proposed elastoplastic model and SWCC of the compacted kaolin. The simulated results agree closely with the experimental results. In addition, the proposed elastoplastic model was also verified against published data from the literature.Key words: matric suction, yield surface, soil-water characteristic curve, mini suction probe, elastoplastic model, unsaturated soil.


1998 ◽  
Vol 35 (5) ◽  
pp. 873-894 ◽  
Author(s):  
S Lee Barbour

The constitutive relationship between water content or degree of saturation and suction is called the soil-water characteristic curve. The soil-water characteristic curve provides a conceptual framework in which the behavior of unsaturated soils can be understood. A historical review illustrates how the work of early researchers in soil science and geotechnical engineering laid the foundation for our current understanding of this relationship. Key elements of these early studies were a conceptual understanding of the soil-water characteristic curve as a relationship between the mass or volume of water stored within the soil and the energy in the water phase. It was on the basis of this conceptual model that current methods of measuring the soil-water characteristic curve were developed. Interpretative models for the distribution and geometry of the water phase in an unsaturated soil based on the capillary model have provided a useful conceptual model for understanding the effects of soil texture, gradation, void ratio, and compaction on the soil-water characteristic curve. The capillary model has also provided the foundation for recently developed techniques to predict the functional relationship between degree of saturation and shear strength, coefficient of permeability, coefficient of diffusion, and adsorption for unsaturated soils.Key words: unsaturated soils, soil-water characteristic curve, suction, shear strength, permeability, contaminant transport.


Sign in / Sign up

Export Citation Format

Share Document