Critical Heat Fluxes for Curved Surfaces during Subcooled Flow Boiling

1975 ◽  
Vol 3 (3) ◽  
pp. 122-130 ◽  
Author(s):  
T.G. Hughes ◽  
D.R. Olson
Author(s):  
Guodong Wang

In this paper, a simultaneous visualization and measurement study have been carried out to investigate bubble nucleation frequency of water in micro-channel at various heat fluxes and mass fluxes. A single micro-channel with an identical rectangular cross-section having a hydraulic of 137 μm and a heating length of 30 mm was used in this experiment. It is shown that the frequency of bubble nucleation increased drastically with the increase of heat flux and was also strongly dependent on the mass flux. A dimensionless frequency of bubble nucleation was correlated in terms of the Boiling number. The predictions of bubble nucleation frequency in the microchannel are found in good agreement with experimental data with a MAE of 10.4%.


Author(s):  
Farzad Houshmand ◽  
Hyoungsoon Lee ◽  
Mehdi Asheghi ◽  
Kenneth E. Goodson

As the proper cooling of the electronic devices leads to significant increase in the performance, two-phase heat transfer to dielectric liquids can be of an interest especially for thermal management solutions for high power density devices with extremely high heat fluxes. In this paper, the pressure drop and critical heat flux (CHF) for subcooled flow boiling of methanol at high heat fluxes exceeding 1 kW/cm2 is investigated. Methanol was propelled into microtubes (ID = 265 and 150 μm) at flow rates up to 40 ml/min (mass fluxes approaching 10000 kg/m2-s), boiled in a portion of the microtube by passing DC current through the walls, and the two-phase pressure drop and CHF were measured for a range of operating parameters. The two-phase pressure drop for subcooled flow boiling was found to be significantly lower than the saturated flow boiling case, which can lead to lower pumping powers and more stability in the cooling systems. CHF was found to be increasing almost linearly with Re and inverse of inner diameter (1/ID), while for a given inner diameter, it decreases with increasing heated length.


Author(s):  
Junye Li ◽  
Kan Zhou ◽  
Wei Li

Abstract An experimental investigation of subcooled flow boiling in a large width-to-height-ratio, one-sided heating rectangular mini-gap channel was conducted with deionized water as the working fluid. The super-hydrophobicity micro-porous structured copper surface was utilized in the experiments. High speed flow visualization was conducted to illustrate the effects of heat flux and mass rate on the heat transfer coefficient and flow pattern on the surfaces. The mass fluxes were in the range of 200–500 kg/m2s, the wall heat fluxes were spanned from 40–400 kW/m2. With increments of imposed heat flux, the slopes of boiling curves for superhydrophobic micro-porous copper surfaces increased rapidly, indicating the Onset of Nucleate Boiling. Heat transfer characteristics were discussed with variation of heat fluxes and mass fluxes, the trends of which were analyzed with the aid of high speed flow visualization.


Author(s):  
Koichi Hata ◽  
Katsuya Fukuda ◽  
Suguru Masuzaki

The transient critical heat fluxes (transient CHFs) in SUS304-circular tubes with various twisted-tape inserts are systematically measured for mass velocities (G = 3988–13,620 kg/m2s), inlet liquid temperatures (Tin = 287.55–313.14 K), outlet pressures (Pout = 805.11–870.23 kPa) and exponentially increasing heat inputs (Q = Q0 exp(t/τ), exponential periods, τ, of 28.39 ms to 8.43 s) by the experimental water loop comprised of a multistage canned-type circulation pump controlled by an inverter. The SUS304-circular tube of inner diameter (d = 6 mm), heated length (L = 59.4 mm), effective length (Leff = 49.4 mm), L/d (=9.9), Leff/d (=8.23), and wall thickness (δ = 0.5 mm) with average surface roughness (Ra = 3.89 μm) is used in this work. The SUS304 twisted-tapes with twist ratios, y [H/d = (pitch of 180 deg rotation)/d], of 2.40 and 4.45 are used. The transient critical heat fluxes for SUS304-circular tubes with the twisted-tapes of y = 2.40 and 4.45 are compared with authors' transient CHF data for the empty SUS304-circular tube and a SUS304-circular tube with the twisted-tape of y = 3.37, and the values calculated by authors' transient CHF correlations for the empty circular tube and the circular tube with twisted-tape insert. The influences of heating rate, twist ratio and swirl velocity on the transient CHF are investigated into details and the widely and precisely predictable correlations of the transient CHF against inlet and outlet subcoolings for the circular tubes with various twisted-tape inserts are given based on the experimental data. The correlations can describe the transient CHFs for SUS304-circular tubes with various twisted-tapes of twist ratios (y = 2.40, 3.37, and 4.45) in the wide experimental ranges of exponential periods (τ = 28.39 ms to 8.43 s) and swirl velocities (usw = 5.04–20.72 m/s) obtained in this work within −26.19% to 14.03% difference. The mechanism of the subcooled flow boiling critical heat flux in a circular tube with twisted-tape insert is discussed.


2021 ◽  
Vol 2116 (1) ◽  
pp. 012052
Author(s):  
David Olugbenga Ariyo ◽  
Tunde Bello-Ochende

Abstract Deionized water at a temperature of 25 °C was used as the cooling fluid and aluminium as the heat sink material in the geometric optimization and parameter modelling of subcooled flow boiling in horizontal equilateral triangular microchannel heat sinks. The thermal resistances of the microchannels were minimized subject to fixed volume constraints of the heat sinks and microchannels. A computational fluid dynamics (CFD) ANSYS code used for both the simulations and the optimizations was validated by the available experimental data in the literature and the agreement was good. Fixed heat fluxes between 100 and 500 W/cm2 and velocities between 0.1 and 7.0 m/s were used in the study. Despite the relatively high heat fluxes in this study, the base temperatures of the optimal microchannel heat sinks were within the acceptable operating range for modern electronics. The pumping power requirements for the optimal microchannels are low, indicating that they can be used in the cooling of electronic devices.


2008 ◽  
Vol 130 (5) ◽  
Author(s):  
Koichi Hata ◽  
Nobuaki Noda

The transient critical heat fluxes (CHFs) of the subcooled water flow boiling for the flow velocities (u=4.0–13.3m∕s), the inlet subcoolings (ΔTsub,in=68.08–161.12K), the inlet pressures (Pin=718.31–1314.62kPa), the dissolved oxygen concentrations (O2=2.94ppm to the saturated one), and the exponentially increasing heat inputs (Q0exp(t∕τ), τ=16.82msto15.52s) are systematically measured with an experimental water loop comprised of a pressurizer. The SUS304 tubes of the inner diameters (d=3mm, 6mm, 9mm, and 12mm), heated lengths (L=33.15–132.9mm), L∕d=5.48–11.08, and wall thickness (δ=0.3mm and 0.5mm) with the rough finished inner surface (surface roughness, Ra=3.18μm) are used in this work. The transient CHF data (qcr,sub=6.91–60MW∕m2) are compared with the values calculated by the steady state CHF correlations against inlet and outlet subcoolings. The transient CHF correlations against inlet and outlet subcoolings are derived based on the experimental data. The dominant mechanisms of the subcooled flow boiling CHF for a high heating rate are discussed.


1993 ◽  
Vol 36 (13) ◽  
pp. 3407-3410 ◽  
Author(s):  
G.P Celata ◽  
M Cumo ◽  
A Mariani ◽  
H Nariai ◽  
F Inasaka

Author(s):  
Tomoyuki Nomura ◽  
Michael V. Shustov ◽  
Koichi Suzuki ◽  
Chungpyo Hong ◽  
Yury A. Kuzma-Kichta

Subcooled flow boiling has been investigated for horizontal mini and micro channels of which hydraulic diameters are 1mm and 150μm, respectively for high heat flux cooling in electronics. The heating surface is 1mm in width and 10mm in length for the mini channel. Eleven micro grooving are made on the copper heating block of 5.25mm×5.25mm. Aqueous solutions of ethanol, 10% and 50% in mass concentration, are used as boiling liquid for the micro channel. Microbubble emission boiling (MEB) of water is generated at liquid subcooling of 40K in the mini channel as same cases of conventional macro channels and the maximum heat flux obtained is a 10MW/m2 at liquid velocity of 1m/s (1000kg/m2s). However, the boiling turns to film boiling at low liquid velocity, 0.3m/s (300kg/m2s) for an example. In subcooled boiling of aqueous solutions, the heat flux becomes small for the lower ethanol concentration. The critical heat fluxes are well agreed with the existing theories and the maximum heat fluxes are higher than CHF. However, no micro bubble emission boiling is observed in subcooled flow boiling of mini channels and the CHF is considerably smaller than the existing theories. It is difficult to generate MEB for micro channels with heating surface of large thermal capacity because the coalescing bubbles formed on the heating surface are filled up in the channel and the liquid vapor exchange is disturbed.


Sign in / Sign up

Export Citation Format

Share Document