DEVELOPMENT OF SMART STRUCTURE SYSTEMS FOR HELICOPTER VIBRATION AND NOISE CONTROL
Helicopters are susceptible to high vibratory loads, excessive noise levels and poor flight stability compared to fixed-wing aircraft. The multidisciplinary nature of helicopter structures offers many opportunities for the innovative smart structure technology to improve helicopter performance. This paper provides a review of smart structures research at the National Research Council Canada for helicopter vibration and cabin noise control applications. The patented Smart Spring approach is developed to vary the blade impedance properties adaptively to reduce the vibratory hub loads transmitted to the fuselage by vibration reduction at the source. A smart gearbox strut and active structural acoustic control technologies are investigated to suppress the vibration and tonal gear meshing noise into the cabin either by modifying the vibration load transmission path, or weakening the coupling between exterior and cabin acoustic fields. Two adaptive seat mount concepts are proposed to reduce the vibration of the aircrew directly to improve ride quality of the vehicle.