cut quality
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 38)

H-INDEX

17
(FIVE YEARS 4)

Author(s):  
Christopher R. Martin ◽  
Alexandrina Untaroiu ◽  
Kemu Xu ◽  
S M Mahbobur Rahman

Abstract This is a study of the suitability of preheat flame electrical resistance as a potential method for measuring the standoff distance an oxyfuel cutting torch and a work piece. Careful scrutiny of forty seven (47) individual experiments demonstrate that when cut quality is good, there is a linear repeatable relationship between the two with uncertainty about ± .3mm (.015in). As the cut quality degrades, the formation of top-edge dross reduces the electrical path length in the flame, and momentary reduction in the reaction rate in the kerf reduces the free electrons in the flame, causing rises in flame resistance. In these conditions, measurement uncertainty reduces to ± 1mm (.040in) or worse.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7542
Author(s):  
Miroslav Müller ◽  
Viktor Kolář ◽  
Jan Šulc ◽  
Rajesh Kumar Mishra ◽  
Monika Hromasová ◽  
...  

The article focuses on the machining of polymeric materials polypropylene (PP) and un-plasticized poly vinyl chloride (PVC-U) after surface treatment with polyurethane and acrylate coatings using waterjet technology. Two types of waterjet technologies, abrasive waterjet (AWJ) and waterjet without abrasive (WJ), were used. The kerf width and its taper angle, at the inlet and outlet of the waterjet from the workpiece, were evaluated. Significant differences between AWJ and WJ technology were found. WJ technology proved to be less effective due to the creation of a nonuniform cutting gap and significant burrs. AWJ technology was shown to be more efficient, i.e., more uniform cuts were achieved compared to WJ technology, especially at a cutting head traverse speed of 50 mm·min−1. The most uniform kerf width or taper angle was achieved for PP + MOBIHEL (0.09°). The materials (PP and PVC-U) with the POLURAN coating had higher values of the taper angle of the cutting gap than the material with the MOBIHEL coating at all cutting head traverse speeds. The SEM results showed that the inappropriate cutting head traverse speed and the associated WJ technology resulted in significant destruction of the material to be cut on the underside of the cut. Delamination of the POLURAN and MOBIHEL coatings from the base material PP and PVC-U was not demonstrated by SEM analysis over the range of cutting head traverse speeds, i.e., 50 to 1000 mm·min−1.


Author(s):  
Miloš Madić ◽  
Mohamed H Gadallah ◽  
Dušan Petković

For an efficient use of laser cutting technology, it is of great importance to analyze the impact of process parameters on different performance indicators, such as cut quality criteria, productivity criteria, costs as well as environmental performance criteria (energy and resource efficiency). Having this in mind, this study presents the experimental results of CO2 laser fusion cutting of AISI 304 stainless steel using nitrogen, with the aim of developing a semi-empirical mathematical model for the estimation of process efficiency as an important indicator of the achievable energy transfer efficiency in the cutting process. The model was developed by relating the theoretical power needed to melt the volume per unit time and used laser power, where the change of kerf width was modeled using an empirical power model in terms of laser cutting parameters such as laser power, cutting speed, and focus position. The obtained results indicated the dominant effect of the focus position on the change in process efficiency, followed by the cutting speed and laser power. In addition, in order to maximize process efficiency and simultaneously ensure high cut quality without dross formation, a laser cutting optimization problem with constraints was formulated and solved. Also, a multi-objective optimization problem aimed at simultaneous optimization of process efficiency and material removal rate was formulated and solved, where the determined set of Pareto non-dominated solutions was analyzed by using the entropy method and multi-criteria decision analysis method, that is, the Technique for Order of Preference by Similarity to Ideal Solution. The optimization results revealed that in order to enhance process efficiency and material removal rate, while ensuring high cut quality without dross formation, focusing the laser beam deep into the bulk of material is needed with particular trade-offs between laser power and cutting speed levels at high pressure levels of nitrogen.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5559
Author(s):  
Ivan Peko ◽  
Dejan Marić ◽  
Bogdan Nedić ◽  
Ivan Samardžić

The plasma jet cutting process has a high potential for the machining of aluminium and its alloys. Aluminium is well known as a highly thermally conductive and sensitive material, and because of that there exist uncertainties in defining process parameters values that lead to the best possible cut quality characteristics. Due to that, comprehensive analysis of process responses as well as defining optimal cutting conditions is necessary. In this study, the effects of three main process parameters—cutting speed, arc current, and cutting height—on the cut quality responses: top kerf width, bevel angle, surface roughness Ra, Rz, and material removal rate were analyzed. Experimentations were conducted on aluminium EN AW-5083. In order to model relations between input parameters and process responses and to conduct their optimization, a novel hybrid approach of response surface methodology (RSM) combined with desirability analysis was presented. Prediction accuracy of developed responses regression models was proved by comparison between experimental and predicted data. Significance of process parameters and their interactions was checked by analysis of variance (ANOVA). Desirability analysis was found as an effective way to conduct multi-response optimization and to define optimal cutting area. Due to its simplicity, the novel presented approach was demonstrated as a useful tool to predict and optimize cut quality responses in plasma jet cutting process of aluminium alloy.


Medicina ◽  
2021 ◽  
Vol 57 (7) ◽  
pp. 700
Author(s):  
Bojan Pajic ◽  
Brigitte Pajic-Eggspuehler ◽  
Christian Rathjen ◽  
Mirko Resan ◽  
Zeljka Cvejic

The power density of femtosecond lasers and exposure time to the tissue are crucial for a successful procedure in terms of safety and precision. The reduction of the pulse duration allows reducing the quantity of the energy to be delivered to the tissue for disruption with strongly diminished mechanical and thermal collateral damage. The cutting effect of ultra-short pulses is very precise, minimally traumatic, safe, and predictable. Future developments will lead to further energy reductions to achieve optical breakdowns. However, the pulse length cannot be shortened arbitrarily because below 100 fs nonlinear effects can change the process in an unfavorable way. Compared to manual-conventional cataract surgery, femtosecond laser-assisted cataract surgery (FLACS) shows many advantages in clinical application, especially with regard to precision and tissue protection. The femtosecond laser has become particularly important and has made the overall procedure safer when we deal with complex cataract cases such as subluxated lenses. We provide an overview of the evolution of femtosecond laser technology for use in refractive and cataract surgeries. This article describes the advantages of available laser platforms with ultrashort pulses and mainly focuses on the technical and physical backgrounds of ophthalmic surgery technologies.


Author(s):  
Christopher R. Martin ◽  
Alexandrina Untaroiu ◽  
Kemu Xu ◽  
S. M. Mahbobur Rahman

Abstract This is a study of the suitability of preheat flame electrical resistance as a potential method for measuring the standoff distance an oxyfuel cutting torch and a work piece. Careful scrutiny of forty seven (47) individual experiments demonstrate that when cut quality is good, there is a linear repeatable relationship between the two with uncertainty about ± .3mm (.015in). As the cut quality degrades, the formation of top-edge dross reduces the electrical path length in the flame, and momentary reduction in the reaction rate in the kerf reduces the free electrons in the flame, causing rises in flame resistance. In these conditions, measurement uncertainty reduces to ± 1mm (.040in) or worse.


2021 ◽  
pp. 2150085
Author(s):  
H. RAMAKRISHNAN ◽  
N. GANESH ◽  
D. JAFREY DANIEL JAMES ◽  
B. ASHOK

Laser Beam cutting is a type of non-conventional machining process in which the removal of materials takes place due to the melting and vaporization of material when the laser beam comes in contact with it. This work examines the impact of the cut quality characteristics of the SS347 material and to find reduced surface roughness, machining time and heat affected zone by laser beam cutting. The cutting process was assisted by CO2 gas pressure. Power, standoff distance, speed and CO2 gas pressure are the cutting parameters considered for this study and the output parameters measured are machining time, heat affected zone and surface roughness. In accordance with L-9 orthogonal arrays, the experiments were planned. Analysis of Variance has been used to study how input functions influence output functions which revealed that speed (59.75% and 89.75%) is the significant factor for machining time and surface roughness while power (91.27%) was the dominant factor for heat affected zone. Gas pressure did not have much influence in the output parameters. The mathematical expressions of the output are used as input for the multi-objective function of the genetic algorithm. Optimal solutions are compared to hybrid and without-hybrid functions. It is found that the hybrid function shows a higher performance compared to the without hybrid function.


Sign in / Sign up

Export Citation Format

Share Document