1999 R.U. Lemieux Award Lecture Adventures with azo-, azoxy-, and hydrazoarenes: from the Wallach to the benzidine rearrangement. Molecular electronics

2000 ◽  
Vol 78 (10) ◽  
pp. 1251-1271 ◽  
Author(s):  
Erwin Buncel

The author's studies with aromatic azo-, azoxy-, and hydrazo-dye molecules, comprising kinetic and equilibrium investigations, as well as synthesis of novel molecules having photogenic properties, are described under the following highlights: A. Wallach rearrangement and cognate studies with azoxyarenes — (1) Elucidation of the mechanism of the Wallach rearrangement of azoxybenzene through the kinetic observation of a two-proton process which, together with a pKa study, was interpreted on the basis of formation of a deoxygenated, dicationic, symmetrical species as a key, short-lived reaction intermediate. (2) The proposal of a general acid-catalyzed pathway in concentrated sulfuric acid (catalysis by H2SO4 and H3SO+4. (3) Elucidation of the consecutive sulfonations of reaction products of azoxybenzene in the 100% H2SO4 region, and the diprotonation equilibria for p-hydroxyazobenzene, thus shedding light on past reaction pathway and product studies. (4) The observation of a novel reaction pathway for 2,4,6,2',4',6'-hexamethy lazoxybenzene. (5) The observation of a dichotomy of reaction pathways for α- and β-2-phenylazoxynaphthalenes: reaction via the dicationic intermediate and via quinoid intermediate species; comprising two isomeric compounds reacting by different pathways to give the same product. (6) Identification and structure proof of α- and β-isomers observed for the first time in the peracid oxidation of phenylazopyridine. (7) Observation of a rate constant ratio of 22 000 in the rearrangement of these α- and β-isomers, and the proposal of differential barriers for transition states leading to a tricationic intermediate. B. Benzidine rearrangement and cognate studies — (8) Observation of the acid-catalyzed hydroxylation of phenylazopyridine to p-hydroxyphenylazopyridine and the proposal of an SNAr mechanism with formation of an intermediate hydrazo species in the reaction. (9) First study of benzidine type rearrangement-disproportionation of phenylhydrazopyridine in acid media. (10) Proposal of a A [Formula: see text] B [Formula: see text] C [Formula: see text] D type reaction profile for the consecutive hydroxylation[Formula: see text]disproportionation processes of phenylazopyridine in aq H2SO4. (11) Proposal of 10-π and 14π-electron electrocyclic processes in the benzidine type rearrangement-disproportionation of phenylhydrazopyridine. (12) Identification and structural elucidation of a dimer formed from phenylazopyridine as a minor product and proposal of a reaction mechanism. C. Facile acid-catalyzed demethylation via SNAr/A-SE2 mechanisms and studies of tautomerism — (13) Observation of an abnormally facile acid-catalyzed cleavage (demethylation) of 4-methoxyphenylazopyridine via an SNAr mechanism. (14) Observation of two reaction pathways, SNAr and A-SE2, for the consecutive demethylations of 3,4-dimethoxyphenylazopyridine, with rate constant ratio of 7 000:1 favoring the SNAr process. (15) Quantitation of the tautomeric and protonation equilibria of 4-hydroxyphenylazopyridine, produced in (13). D. A new solvent polarity scale, molecular switches, and molecular electronics — (16) Establishment of a π*azo solvent polarity scale based on solvatochromism of a series of azomerocyanine molecules ("Buncel's dye"). (17) Some glimpses are presented of current forays into molecular electronics, as emanating from the above studies: (a) spiropyran (SP) <—> merocyanine (MC) thermo- and photochromic "molecular switch" systems; (b) synthesis and characterization of azo-functionalized star-burst dendrimers with photoswitchable properties and potential applications in optical data storage systems, holographic gratings, and drug delivery systems as host molecules.Key words: Wallach rearrangement, benzidine disproportionation, azoarenes, azoxyarenes, dendrimers, hydrazoarenes, dendrimers, solvatochromism, photochromism, thermochromism, spiropyran-merocyanine molecular switch.






1988 ◽  
Vol 66 (8) ◽  
pp. 2025-2033 ◽  
Author(s):  
W. W. Lam ◽  
T. Yokota ◽  
I. Safarik ◽  
O. P. Strausz

Detailed investigation of the photolysis of i-C3H7SH has been carried out in the absence and presence of the inert gas, n-C4H10. A mechanism consisting of three primary photochemical steps: [Formula: see text], [Formula: see text]; [Formula: see text], [Formula: see text]; [Formula: see text],[Formula: see text]; six hot reaction steps and seven thermal reaction steps adequately explains all the experimental observations. As in the case of hot H* atoms both the H-atom abstraction, [Formula: see text], and the SH-displacement, [Formula: see text], reactions occur with thermalized H-atoms, with the rate constant ratio k7/k8 = 19.2 ± 4.3 at 25 °C. The Arrhenius expressions have been determined over the temperature range 25–145 °C, to be: k7 = (4.0 ± 0.7) × 1012 exp [(−1066 ± 43)/RT] and k8 = (2.8 ± 0.6) × 1012 exp[(−2597 ± 114)/RT] cm3 mol−1 s−1. It was found that the overall mechanism for the photolytic decomposition of i-C3H7SH is analogous to that established for C2H5SH in previous investigations.



1993 ◽  
Vol 71 (8) ◽  
pp. 1247-1252 ◽  
Author(s):  
Marta Luiz ◽  
María I. Gutiérrez ◽  
Graciela Bocco ◽  
Norman A. García

The influence of solvent polarity on the dye-sensitized photooxidation (singlet molecular oxygen (O2(1Δg)) mediated) of a series of para-substituted phenolates was studied. Kinetic evidence obtained shows that the overall and the pure chemical interactions, phenolate–O2(1Δg), depend on the solvent polarity in a different way. This is clearly reflected in the efficiency of O2(1Δg) photooxidation of the substrates: surprisingly, the photooxidation quantum yield increases as the overall quenching rate constant decreases. The substrate photooxidation quantum yields obtained ranged from 0.05 to 0.15, the upper limit corresponding to a moderately polar medium (a benzene–methanol mixture) and the lower to an aqueous medium. We conclude that a high solvent polarity favours only the obtainment of the encounter complex (O2(1Δg)–phenolate), whereas the reactive step is affected in much the same way as those processes where charges are neutralized along the reaction pathway. The results obtained are discussed in terms of a partly polar excited state complex between O2(1Δg) and the phenolates. The rate constant for the reactive pathway in both organic and aqueous media is correlated with the Hammet-type substituent constant R−.







1990 ◽  
Vol 168 (1) ◽  
pp. 14-19 ◽  
Author(s):  
G. Elfers ◽  
F. Zabel ◽  
K.H. Becker


Sign in / Sign up

Export Citation Format

Share Document