Dynamics of the transient species generated upon photolysis of diarylmethanes within zeolites — Deprotonation and oxidation reactions

2005 ◽  
Vol 83 (9) ◽  
pp. 1637-1648 ◽  
Author(s):  
Suzanne Shea ◽  
Norman P Schepp ◽  
Amy E Keirstead ◽  
Frances L Cozens

The oxidation of diarylmethanes is a multistep process involving initial formation of a radical cation, deprotonation of the radical cation to the radical, and oxidation of the radical to the carbocation. The dynamics and efficiency of the last two steps in this process, namely deprotonation and oxidation, in acidic zeolites and non-acid zeolites are examined in the present work as a function of the acidity of the diarylmethane radical cations and the oxidation potential of the diarylmethyl radicals. Our results indicate that rate constants for deprotonation strongly depend on the acidity of the radical cations, but not on the composition of the zeolites. In addition, oxidation of the radicals to the diarylmethyl cations is strongly dependent on both the oxidation potential of the radicals and the oxidizing ability of the zeolite. This dependence allows oxidation potentials of the zeolites to be estimated.Key words: radical cations, carbocations, zeolites, laser flash photolysis.

1997 ◽  
Vol 75 (12) ◽  
pp. 1820-1829 ◽  
Author(s):  
D. Shukla ◽  
N.P. Schepp ◽  
N. Mathivanan ◽  
L.J. Johnston

A number of methoxy-substituted phenoxyl radicals have been generated and characterized by laser flash photolysis techniques in solution and on paper. The radicals have been produced by three routes in solution: hydrogen abstraction from phenols by tert-butoxyl radical, photolysis of α-aryloxyacetophenones, and direct excitation of phenols. Most of the phenoxyl radicals studied have a characteristic absorption near 400 nm; the ortho-substituted radicals have an additional broad absorption in the visible in non-hydroxylic solvents (e.g., 650 nm for 2-methoxyphenoxyl radical). The relative intensities of the 400 nm and the long-wavelength bands vary with substitution pattern and solvent, with the long wavelength band being much weaker in hydroxylic solvents. Direct excitation of phenols provides an alternate source of phenoxyl radicals in some cases. However, for 4-methoxyphenol there are overlapping absorptions due to triplet phenol and phenol radical cation, both of which absorb in the 400–460 nm region. The 4-methoxyphenol radical cation is formed in a biphotonic process and decays by deprotonation to give the phenoxyl radical. The 4-methoxyphenoxyl radical can also be generated on paper from either the ketone or phenol precursor and decays with complex kinetics that depend on the precursor loading and laser intensity. There is no evidence for the formation of significant amounts of long-lived ketone or phenol triplets on paper. The decay kinetics for the phenoxyl radical are modified by the addition of the radical scavenger dithioerythritol. The results indicate both static and dynamic components to the radical scavenging process. The generation of phenoxyl radicals on paper in the presence and absence of scavengers provides the basis for the development of a new method for screening potential photoyellowing inhibitors and understanding their mode of action. Keywords: phenoxyl radicals, paper photoyellowing, laser flash photolysis, triplets, radical cations.


2003 ◽  
Vol 81 (6) ◽  
pp. 799-806 ◽  
Author(s):  
N P Schepp ◽  
Y Rodríguez-Evora

Nanosecond laser flash photolysis of coniferyl alcohol and isoeugenol in acetonitrile leads to the formation of transient species that are identified as the corresponding radical cations. These radical cations decay with rate constants of ca. 1 × 106 s–1 in dry acetonitrile. Both radical cations react rapidly with hydroxylic solvents like water and alcohols to give 4-vinylphenoxyl radicals, indicating that these reagents behave as bases rather than nucleophiles. In addition, anionic reagents (acetate, cyanide, and chloride) react rapidly with the radical cations with second-order rate constants that are close to diffusion controlled. The main products generated in the presence of the anionic reagents are again the 4-vinylphenoxyl radicals, suggesting that these reagents also behave as bases. The lifetime of the radical cations in acidic acetonitrile was found to increase dramatically due to a shift in the radical cation – vinyl phenoxyl radical acid–base equilibrium to the side of the radical cation. An estimate of the pKa of the radical cation in acetonitrile of 4.0 was obtained from the data.Key words: radical cations, laser flash photolysis, lignan, vinylphenols.


1989 ◽  
Vol 93 (21) ◽  
pp. 7370-7374 ◽  
Author(s):  
L. J. Johnston ◽  
J. Lobaugh ◽  
V. Wintgens

2013 ◽  
Vol 89 (5) ◽  
pp. 1064-1070 ◽  
Author(s):  
Kun Li ◽  
Mei Wang ◽  
Ting Wang ◽  
Dongmei Sun ◽  
Rongrong Zhu ◽  
...  

1988 ◽  
Vol 66 (10) ◽  
pp. 2595-2600 ◽  
Author(s):  
D. Weir ◽  
J. C. Scaiano ◽  
D. I. Schuster

Laser flash photolysis studies lead to the conclusion that the short-lived triplet states of cyclohexenones are readily quenched by amines. For example, in the case of 2-cyclohexen-1-one (1) its triplet state (τT = 40 ns in acetonitrile) is quenched by triethylamine with a rate constant of (9.0 ± 0.8) × 107 M−1 s−1. Cyclohexenone triplets are also quenched efficiently by DABCO and by triphenylamine leading to the formation of the corresponding amine radical cations. The new evidence reported rules out the involvement of long-lived detectable exciplexes.


Sign in / Sign up

Export Citation Format

Share Document