Synthesis and aldol cyclotrimerization of 4,7-di-tert-butylacenaphthenone

2006 ◽  
Vol 84 (10) ◽  
pp. 1268-1272 ◽  
Author(s):  
Aaron W Amick ◽  
Keith S Griswold ◽  
Lawrence T Scott

An efficient gram scale synthesis of the previously unknown 4,7-di-tert-butylacenaphthenone (3b) is reported. The facile isomerization of epoxide 9b to ketone 3b occurs simply on stirring a solution of 9b with silica gel at room temperature. Aldol cyclotrimerization of 3b with titanium tetrachloride gives 2,5,8,11,14,17-hexa-tert-butylde cacyclene (1b) in 58% isolated yield. X-ray crystal structures have been obtained for the synthetic intermediates 4,7-di-tert-butylacenaphthene (2b) and 4,7-di-tert-butylacenaphthylene (8b).Key words: aromatic, decacyclene, hydrocarbon, nonalternant, polycyclic.

2003 ◽  
Vol 18 (2) ◽  
pp. 128-134 ◽  
Author(s):  
A. Le Bail ◽  
A.-M. Mercier

The crystal structures of the chiolite-related room temperature phases α-Na5M3F14 (MIII=Cr,Fe,Ga) are determined. For all of them, the space group is P21/n, Z=2; a=10.5096(3) Å, b=7.2253(2) Å, c=7.2713(2) Å, β=90.6753(7)° (M=Cr); a=10.4342(7) Å, b=7.3418(6) Å, c=7.4023(6) Å, β=90.799(5)° (M=Fe), and a=10.4052(1) Å, b=7.2251(1) Å, c=7.2689(1), β=90.6640(4)° (M=Ga). Rietveld refinements produce final RF factors 0.036, 0.033, and 0.035, and RWP factors, 0.125, 0.116, and 0.096, for MIII=Cr, Fe, and Ga, respectively. The MF6 polyhedra in the defective isolated perovskite-like layers deviate very few from perfect octahedra. Subtle octahedra tiltings lead to the symmetry decrease from the P4/mnc space group adopted by the Na5Al3F14 chiolite aristotype to the P21/n space group adopted by the title series. Facile twinning precluded till now the precise characterization of these compounds.


1998 ◽  
Vol 76 (12) ◽  
pp. 1844-1852
Author(s):  
Fernande D Rochon ◽  
Robert Melanson ◽  
Margaret M Kayser

At lower temperatures stabilized ylides react with unsymmetrically substituted phthalic anhydrides to give two acyclic adducts. When the reactions are allowed to proceed at higher temperature enol lactones are formed. Identification of the acyclic intermediates was necessary to understand the mechanism of these Wittig reactions. The transient species trapped in the reaction with trimethyloxonium tetrafluoroborate were unambiguously identified by crystallographic methods. The crystal structures of the tetrafluoroborate salt of methyl(triphenylphosphoranyl idene)- acetate (8), methyl(3-methoxy,2-methoxycarbonylbenzoyl)triphenylphosphoranylideneacetate (6β), and methyl(2-methoxycarbonyl,6-nitrobenzoyl)triphenylphosphoranylideneacetate (7α) were studied by X-ray diffraction. The ionic salt (8) is monoclinic, P21c,a= 12.640(5), b = 13.945(9), c = 14.825(6) Å, β = 125.32(3)°, Z = 4, and R = 0.065 (F >5.4 σ(F)). Crystal 6 β is monoclinic, P21c,a = 16.391(16), b = 9.029(6), c = 19.835(19) Å, β = 116.60(6)°, Z = 4, and R = 0.070 (F > 4.6 σ(F)), while crystal 7α is also monoclinic, P21c,a = 9.513(5), b = 9.361(3), c = 30.908(13) Å, β = 98.42(3)°, Z = 4, and R = 0.057 (F >5 σ(F)). In the BF 4- salt (12), the four P-C distances are equal (1.791(5)-1.801(7) Å) with identical tetrahedral angles. For the two triphenylphosphoranylideneacetate compounds, the fourth P-C(1) bond is shorter (1.762(6)-1.734(5) Å) than the three P-C(Ph) bonds (avg. 1.809(5) Å). The angles C(1)-P-C(Ph) are also larger (avg. 112.9(2)° for 6β and 111.9(2)° for 7α) than the C(Ph)-P-C(Ph) angles (avg. 105.8(2)° for 6 β and 106.9(2)° for 7α). These values suggest a multiple nature for the P-C(1) bond. In the nitro derivative, the nitro and the ester groups are disordered equally in positions 2 and 6. Key words: Wittig reactions, cyclic anhydrides, stabilized ylide, phosphoranylidenes, crystal structures.


Author(s):  
Robert E. Dinnebier ◽  
Hanne Nuss ◽  
Martin Jansen

AbstractThe crystal structures of solvent-free lithium, sodium, rubidium, and cesium squarates have been determined from high resolution synchrotron and X-ray laboratory powder patterns. Crystallographic data at room temperature of Li


1997 ◽  
Vol 50 (10) ◽  
pp. 959 ◽  
Author(s):  
Glen B. Deacon ◽  
Craig M. Forsyth ◽  
Bryan M. Gatehouse ◽  
Anna Philosof ◽  
Brian W. Skelton ◽  
...  

Redox transmetallation ofTl(C5H4PPh2)with an excess of Sm in refluxing thf (thf = tetrahydrofuran) or Eu indme (dme = 1,2-dimethoxyethane) at room temperature gave thelanthanoid(II) compounds[Sm(C5H4PPh2)2](1) and[Eu(C5H4PPh2)2(dme)](2). Crystallization of (1) or[Yb(C5H4PPh2)2(dme)]with OPPh3 in dme yielded[Sm(C5H4PPh2)2(OPPh3)2](3) and[Yb(C5H4PPh2)2(OPPh3)2](4). Room-temperature transmetallation ofTl(C5H4PPh2)with Nd gave the lanthanoid(III) compound[Nd(C5H4PPh2)3(thf)](5), but analogous reactions with La, Pr, Er, Gd and Y in refluxing thfgenerally gave intractable oils, although in one instance impure[La(C5H4PPh2)3(thf)]·(thf)0 · 5,namely(6)·(thf)0 · 5, wasisolated. This complex was also obtained at room temperature by usingLaI3-activated La metal. Oxidation of (1) with 1 equiv.ofTl(C5H4PPh2)in toluene yielded solvent-freeSm(C5H4PPh2)3(7). Addition of OPPh3 to these systems allowed theisolation of[Ln(C5H4PPh2)3(OPPh3)]·(thf)x(x = 0-1 · 5; Ln = La (8), Pr (9),Nd (10), Sm (11), Er (12), Y (13)). Single-crystal X-ray structuredetermination of(10)·(thf)1 · 5,(11)·(thf)1 · 5 and(12)·(thf)1 · 5revealed formally 10-coordinate complexes with an O-bondedOPPh3, threeη5-C5H4PPh2ligands and lattice thf. The centroids of the C5 ringsand the oxygen atom surround the central metal in a distorted tetrahedralarray.


1996 ◽  
Vol 74 (11) ◽  
pp. 2331-2339 ◽  
Author(s):  
Sean R. Klopfenstein ◽  
Constanze Kluwe ◽  
Kristin Kirschbaum ◽  
Julian A. Davies

The binuciear palladium(I) complex, [Pd2Cl2(μ-dppm)2] (dppm = bis(diphenylphosphino)methane), has been shown to react with bis(diethylamino)acetylene, Et2NC≡CNEt2, in methylene chloride solution to yield two isolable products, the known methylene-bridged complex, [Pd2Cl2(μ-CH2)(μ-dppm)2], and hexakis(diethylamino)benzene, C6(NEt2)6, both of which have been characterized crystallographically. The source of the bridging methylene group in [Pd2Cl2(μ-CH2)(μ-dppm)2] has been shown to be the methylene chloride solvent. A mechanism that accounts for the formation of the two isolable products is proposed. The complex, [Pd2Cl2(μdmpm)2] (dmpm = bis(dimethylphosphino)methane), was similarly found to react with Et2NC≡NEt2 in methylene chloride solution to yield [Pd2Cl2(μ-CH2)(μ-dmpm)2], which was identified spectroscopically. Key words: acetylene, palladium, cyclooligomerization, aminoacetylene, hexakis(diethylamino)benzene.


2007 ◽  
Vol 63 (6) ◽  
pp. 836-842 ◽  
Author(s):  
Sebastian Prinz ◽  
Karine M. Sparta ◽  
Georg Roth

The V4+ (spin ½) oxovanadates AV3O7 (A = Ca, Sr) were synthesized and studied by means of single-crystal X-ray diffraction. The room-temperature structures of both compounds are orthorhombic and their respective space groups are Pnma and Pmmn. The previously assumed structure of SrV3O7 has been revised and the temperature dependence of both crystal structures in the temperature ranges 297–100 K and 315–100 K, respectively, is discussed for the first time.


1978 ◽  
Vol 31 (6) ◽  
pp. 1195 ◽  
Author(s):  
BN Figgis ◽  
BW Skelton ◽  
AH White

The room-temperature (295 K) crystal structures of potassium ferricyanide, K3[Fe(CN)6], have been determined for the simplest monoclinic (a reinvestigation) and orthorhombic polytypes by single- crystal X-ray diffraction. The monoclinic form is P21/c, a 7.047(3), b 10.400(3), c 8.384(3) Ǻ, β 107.29(3)°, Z 2. The iron atoms lie on special positions with symmetry 1. In the orthorhombic form, Pnca, a 13.422(6), b 10.396(4), 8.381(4) Ǻ, Z4, the iron atoms now lie on special positions with symmetry 2 (parallel to c). Residuals are 0.036 and 0.048 for 1232 and 855 'observed' reflections respectively.


1985 ◽  
Vol 38 (3) ◽  
pp. 401 ◽  
Author(s):  
MJ O'Connell ◽  
CG Ramsay ◽  
PJ Steel

The colourless crystalline form of the benzoylpyrazolone (2) has molecules with the NH structure (2c) stabilized by intermolecular hydrogen bonds. At room temperature crystals are monoclinic: P21/c, a 13.508(5), b 9.124(4), c 11.451(3)Ǻ, β 90.80(3)°, Z4; the structure was refined to R 0.059, Rw 0.048. The acetoacetylpyrazolone (3) has the OH structure (3c) with two intramolecular hydrogen bonds. At 193 K crystals are triclinic: Pī , a 7.142(2), b 13.704(8), c 14.699(7)Ǻ, α 117.36(3), β 96.87(3), γ 93.73(3)°, Z 4; the structure was refined to R 0.049, Rw 0.054.


1979 ◽  
Vol 34 (3) ◽  
pp. 431-433 ◽  
Author(s):  
Manfred Spieß ◽  
Reginald Gruehn

Abstract Thermal Behaviour, Crystal Structures, Modifications Using the high temperature Guinier technique the transformation of the room temperature form N-PbSO4 to the cubic high-temperature form H-PbSO4 was observed. The nonquenchable H-PbSO4 modification crystallizes in the α-NaClO4-type with a(900°) = 7,23 Å, Z = 4 and dX-ray (900 °C) = 5,33 g/cm3 . The thermal dilatation of N-and H-PbSO4 was measured.


Sign in / Sign up

Export Citation Format

Share Document