scholarly journals Allyl radicals from 3,3′-azo-1-propene

1970 ◽  
Vol 48 (17) ◽  
pp. 2745-2754 ◽  
Author(s):  
Basil H. Al-Sader ◽  
Robert J. Crawford

3,3′-Azo-1-propene (4), 3,3′-azo-1-propene-3,3′-d2 (5) and 3,3′-azo-1-propene-3,3,3′3′-d4 (6) have been synthesized and characterized. Thermolysis of 4, at 40–300 Torr, and in the region 150–170°, followed first order kinetics (Ea = 36.1 ± 0.2 kcal mole−1, log A = 15.54 ± 0.10) the major product, >99.9%, being 1,5-hexadiene (9). The presence of less than 0.1% propene suggests that the allyl radical is unable to abstract hydrogen from 4 or 9. Statistical scrambling of deuterium, in the products of thermolysis of 5 and 6, was observed. These results are interpreted in terms of a mechanism wherein allyl radicals are generated. Comparison of the activation energies for azoalkanes and 4 with the bond dissociation energies of hydrocarbons suggest that a good Polanyi plot is possible.

Investigation of the pyrolyses of bromobenzene, β -bromonaphthalene, α -bromonaphthalene, 9-bromophenanthrene and 9-bromoanthraeene in the presence of an excess of toluene has shown that reaction (1) Ar .Br → Ar • + Br (1) is the primary and rate-determining step of the pyrolysis. The progress of reaction was measured by the rate of formation of hydrogen bromide, and it was shown that this rate obeys first-order kinetics. The following values were obtained for the activation energies and frequency factors of unimolecular decompositions represented by equation (1): compound E (kcal/mole) 10 -13 v (sec -1 ) bromobenzene 70.9 2 β -bromonaphthalene 700 1.5 α -bromonaphthalene 70.9 3.5 9-bromophenanthrene 67.7 1 9-bromoanthracene 65.6 1.5 Assuming that recombination of bromine atoms with aromatic radicals does not involve any activation energy we conclude tha t the determined activation energies correspond to the respective C—Br bond dissociation energies. The effect of molecular structure on the C—Br bond dissociation energy is discussed. The heat of formation of the phenyl radical is determined, and this result is used for calculating the various Ph — X bond dissociation energies.


The pyrolyses of methyl bromide and of the halogenated bromomethanes, CH 2 CI. Br, CH 2 Br 2 , CHCl 2 .Br, CHBr 3 , CF 3 Br, CCI 3 . Br and CBr 4 , have been investigated by the ‘toluene-carrier' technique. It has been shown that all these decompositions were initiated by the unimolecular process R Br → R + Br. (1) Since all these decompositions were carried out in the presence of an excess of toluene, the bromine atoms produced in process (1) were readily removed by the fast reaction C 6 H 5 .CH 3 + Br → C 6 H 5 . CH 2 • + HBr. Hence, the rate of the unimolecular process (1) has been measured by the rate of formation of HBr. The C—Br bond dissociation energies were assumed to be equal to the activation energies of the relevant unimolecular dissociation processes. These were calculated by using the expression k ═ 2 x 10 13 exp (- D/RT ). The reason for choosing this particular value of 2 x 10 13 sec. -1 for the frequency factor of these reactions is discussed. The values obtained for the C—Br bond dissociation energies in the investigated bromomethanes are: D (C—Br) D (C—Br) compound (kcal./mole) compound (kcal./mole) CH 3 Br (67.5) CHBr 3 55.5 CH 2 CIBr 61.0 CF 3 Br 64.5 CH 2 Br 2 62.5 CCI 3 Br 49.0 CHCl 2 Br 53.5 CBr 4 49.0 The possible factors responsible for the variation of the C—Br bond dissociation energy in these compounds have been pointed out.


1968 ◽  
Vol 46 (24) ◽  
pp. 3785-3788 ◽  
Author(s):  
Mervyn Chiang ◽  
Robert Wheeler

The thermal emission of negative azide ions from a heated filament operating in gases of both HN3 and CH3N3 has been studied in a magnetron cell and the temperature variation of this current used to deduce the C—N bond dissociation energies in both molecules. Results indicate higher values than previous estimates. They are: D0(H—N3) = 90 ± 8 kcal/mole and D0(CH3—N3) = 88 ± 8 kcal/mole at 0°K.


1994 ◽  
Vol 26 (1) ◽  
pp. 211-217 ◽  
Author(s):  
G. P. Smith ◽  
J. A. Manion ◽  
M. J. Rossi ◽  
A. S. Rodgers ◽  
D. M. Golden

2020 ◽  
Author(s):  
Abdul Malik ◽  
Riccardo Spezia ◽  
William L. Hase

Thermometer ions are widely used to calibrate the internal energy of the ions produced by electrospray ionization in mass spectrometry. Commonly used ions are benzylpyridinium ions with different substituents. More recently benzhydrylpyridinium ions were proposed for their lower bond dissociation energies. Direct dynamics simulations using M06-2X/6-31G(d), DFTB, and PM6-D3 are performed to characterize the activation energies of two representative systems; para-methyl-benzylpyridinium ion (p-Me-BnPy+) and methyl,methylbenzhydrylpyridinium ion (Me,Me-BhPy+). The theoretical bond dissociation energies match closely with the experiment. Simulation results are used to calculate rate constants for the two systems. These rate constants and their uncertainties are used to find the Arrhenius activation energies and RRK fitted threshold energies which give reasonable agreement with calculated bond dissociation energies at the same level of theory. There is only one fragmentation mechanism observed for both systems, which involves C-N bond dissociation via a loose transition state, to generate either benzylium or benzhydrylium ion and a neutral pyridine molecule. For p-Me-BnPy+ using DFTB and PM6-D3 the formation of tropylium ion, from rearrangement of benzylium ion, was observed but only at higher excitation energies and for longer simulation times. These observations suggest that there is no competition between reaction pathways that could affect the reliability of internal energy calibrations.


2020 ◽  
Author(s):  
Abdul Malik ◽  
Riccardo Spezia ◽  
William L. Hase

Thermometer ions are widely used to calibrate the internal energy of the ions produced by electrospray ionization in mass spectrometry. Commonly used ions are benzylpyridinium ions with different substituents. More recently benzhydrylpyridinium ions were proposed for their lower bond dissociation energies. Direct dynamics simulations using M06-2X/6-31G(d), DFTB, and PM6-D3 are performed to characterize the activation energies of two representative systems; para-methyl-benzylpyridinium ion (p-Me-BnPy+) and methyl,methylbenzhydrylpyridinium ion (Me,Me-BhPy+). The theoretical bond dissociation energies match closely with the experiment. Simulation results are used to calculate rate constants for the two systems. These rate constants and their uncertainties are used to find the Arrhenius activation energies and RRK fitted threshold energies which give reasonable agreement with calculated bond dissociation energies at the same level of theory. There is only one fragmentation mechanism observed for both systems, which involves C-N bond dissociation via a loose transition state, to generate either benzylium or benzhydrylium ion and a neutral pyridine molecule. For p-Me-BnPy+ using DFTB and PM6-D3 the formation of tropylium ion, from rearrangement of benzylium ion, was observed but only at higher excitation energies and for longer simulation times. These observations suggest that there is no competition between reaction pathways that could affect the reliability of internal energy calibrations.


The pyrolysis of butene-1 was investigated by a flow technique, toluene being used as a carrier gas. It was found that butene-1 decomposed into allyl and methyl radicals according to the equation CH 2 : CH.CH 2 — CH 3 → CH 2 : CH.CH 2 + CH 3 . Methyl radicals were removed by reaction with toluene giving methane and benzyl radicals. The rate of the initial decomposition was measured by the rate of formation of methane. The decomposition was found to be a homogeneous first order gas reaction. The activation energy was calculated at 61.5 kcal./mole and it was identified with the CH 2 : CH.CH 2 — CH 3 bond dissociation energy. Taking D (CH 2 : CH.CH 2 —CH 3 ) at 61.5 kcal./mole we calculated from thermochemical data D (CH 2 : CH.CH 2 —H) at 76.5 kcal./mole and the heat of formation of allyl radical at + 30 kcal./mole. The fate of allyl radicals is discussed and the thermal stability of these is compared with that of benzyl radicals.


The equilibrium constants of the two reactions C 2 H 4 + H X = C 2 H 5 X , where X = Cl or Br, have been measured for X = Cl from 449 to 491° K, and for X = Br from 515 to 573° K, The methods of preparing and purifying the substances used, of carrying out the analyses and of determining the equilibrium constants have been described. The results for the ethyl chloride equilibrium were combined with calculations of the entropy change using Gordon & Giauque’s barrier height in ethyl chloride of 3700 cal/mole to obtain a value for the heat content change. The value for this, corrected to 298° K, is 17·1 kcal/mole. This leads to a heat of formation of ethyl chloride of – 26·7 and a heat of dissociation of the C—Cl bond in ethyl chloride of 80·9 kcal/mole. For the ethyl bromide equilibrium, the entropy change was calculated using barrier heights in ethyl bromide of 3000, 4000 and 5000 cal/mole. Using the entropy changes calculated it was concluded that the heat of reaction, corrected to 298° K, is within 0·3 kcal/mole of 19·1. This leads to a heat of formation of ethyl bromide of – 15·3 and a heat of dissociation of the C—Br bond in ethyl bromide of 67·2 kcal/mole. The two bond dissociation energies have been incorporated in the recent tables of Mortimer, Pritchard & Skinner listing such energies. The significance of the values for the bond dissociation energies in the series of RX molecules, where R = Me, Et, n-Pr, n-Bu, iso-Pr and tert.-Bu , and X = H, Cl and Br have been discussed.


The paper reports the effects of substituents on C— Br bond dissociation energy in substituted bromobenzenes. The following substituents introduced in various positions of benzene ring were investigated: F, Cl, Br, CH 3 , C 6 H 5 , CN and OH. In addition, the studies were extended to bromopyridines and bromothiophene. Assuming that the frequency factor is constant for the series of decompositions, the following values were obtained for the difference ∆ D = D ( Ph — Br) - D ( Ph s — Br), where Ph s Br denotes a molecule of substituted bromobenzene: substituent ∆D (kcal/mole) substituent ∆D (kcal/mole) p -F 0-5 m -C 6 H 5 0-8 p -Cl 0-6 o -C 6 H 5 2-7 m -Cl 1-0 p -CN 0-3 o -Cl 1-2 m -CN 0-8 p -Br 0-3 o -CN 0-6 o -Br 1-8 p -OH 3-9 P -CH 3 0-2 o -OH 3-8 m -CH 3 0-2 3-bromopyridine -5-0 o -CH 3 0-8 2-bromopyridine -0-6 p -C 6 H 5 0-2 2-bromothiophene 2-4 The significance of these results is discussed, and a tentative explanation of the observed effects is proposed.


Sign in / Sign up

Export Citation Format

Share Document