A proton magnetic resonance determination of the rotational barrier in benzyl chloride and of the low energy conformations in benzyl bromide and iodide derivatives based on motionally averaged spin–spin interactions

1976 ◽  
Vol 54 (20) ◽  
pp. 3210-3215 ◽  
Author(s):  
Ted Schaefer ◽  
Leonard J. Kruczynski ◽  
William J. E. Parr

The long-range spin–spin coupling constants over six bonds between side-chain and ring protons in benzyl chloride derivatives are combined with solutions to the hindered rotor problem to demonstrate that the twofold barrier to internal rotation in benzyl chloride is 2.1 ± 0.4 kcal/mol. The low energy conformation is that in which the C—Cl bond lies in a plane perpendicular to the aromatic plane. Molecular orbital calculations at the MINDO/3 and STO-3G levels indicate that the conformation in which the C—Cl bond lies in a plane having an angle of 60° to the aromatic plane has a higher energy; comparable to kT at ambient temperatures. The geometry-optimized STO-3G results agree quantitatively with the derived barrier for benzyl chloride. A semiempirical relationship between the long-range couplings over four bonds and the internal barrier for a number of benzyl compounds indicates a barrier of 3.1 kcal/mol for benzyl bromide and of 3.6 kcal/mol for benzyl iodide, these values being lower limits. The observed coupling constants are only consistent with low-energy conformations analogous to that for benzyl chloride, so that they contrast with the low-energy conformation for benzyl fluoride in which the C—F bond lies in the aromatic plane. The present method for the determination of twofold barriers in benzyl derivatives is useful in the range from about 0.2 to 2 kcal/mol.

1977 ◽  
Vol 55 (3) ◽  
pp. 557-561 ◽  
Author(s):  
William J. E. Parr ◽  
Ted Schaefer

The long-range spin–spin coupling constants between protons bonded to silicon and ring protons in C6H5SiH3, C6H5SiH2Cl, C6H5SiH2CH3, C6H5SiHCl2, and C6H5SiH(CH3)2 are determined from the proton magnetic resonance spectra of benzene solutions. A hindered rotor treatment of the barrier to internal rotation about the C—Si bond, in conjunction with the coupling constants over six bonds, allows the deduction of the low-energy conformations for C6H5SiH(CH3)2 and for C6H5SiHCl2, as well as of barriers of 1.0 ± 0.2 kcal/mol. The approach becomes less reliable for C6H5SiH2CH3 and for C6H5SiH2Cl and, particularly for the latter compound, the derived barrier is very likely an upper limit only. Ab initio molecular orbital calculations of the conformational energies are reported for C6H5SiH3, C6H5SiH2Cl, and for C6H5SiHCl2.


1990 ◽  
Vol 68 (9) ◽  
pp. 1548-1552 ◽  
Author(s):  
Ted Schaefer ◽  
Rudy Sebastian

STO-3G and 4-31G MO computations are reported for a range of values of the folding angle in xanthene, the dihedral angle between the benzene planes. Unlike 9,10-dihydroanthracene but like dibenzo-p-dioxin, its "parent" molecules, the inversion or puckering potential for xanthene is calculated to be rather flat. The molecular energies between a folding angle of 180° (planar molecule) and 120° are reproduced by analytical functions of [Formula: see text], θ being the folding angle. The long-range spin–spin coupling constants between the methylene protons and the aromatic protons at 300 K are reported for xanthene dissolved in a CS2/C6D12 solvent mixture and in acetone-d6 solution. These conformationally sensitive coupling constants are consistent with the theoretical puckering potentials and therefore with substantial "butterfly" motion at ambient temperatures. The computed geometries of xanthene are also given and briefly discussed. Keywords: xanthene, MO computations on inversion; xanthene, long-range spin–spin coupling constants; xanthene, internal motion; xanthene, inversion potentials.


1972 ◽  
Vol 50 (12) ◽  
pp. 1863-1867 ◽  
Author(s):  
L. Ernst ◽  
H. M. Hutton ◽  
T. Schaefer

The high resolution p.m.r. spectra of 1-penten-3-yne in carbon disulfide and in benzene solution are analyzed. Long-range spin–spin coupling constants are discussed in terms of σ and π electron contributions. Comparisons are made with the isomeric 2-methyl-1-buten-3-yne and the parent compound, vinylacetylene. The results of INDO and CNDO/2 molecular orbital calculations are compared to the experimental coupling constants. It is concluded that the π electron contribution to 5J in enyne systems is +0.6 to 0.7 Hz and that σ electron contributions are rather small, the transoid ("pseudo-zig–zag") being larger than the cisoid one. Observed allylic coupling constants in the propene derivative are compared with the calculated values, including those for propene and 2-cyanopropene, available in the literature.


Author(s):  
Anwar, E. M. Noreljaleel

A new methods for elucidating stereochemistry of organic compounds was developed on the basis of long-range proton–carbon coupling constants (2,3JC,H) and interpreting spin-coupling constants (3JH,H). Reaction of compound containing pyrin ring with nucleophile reagent was done to open the ring. HSQC-TOCSY experiments one of the new NMR spectroscopy method used to measure this values of spin-coupling constants and elucidating the stereochemistry of the product.


1994 ◽  
Vol 49 (10) ◽  
pp. 1407-1409 ◽  
Author(s):  
Bernd Wrackmeyer ◽  
Gerald Kehr

AbstractIf for a given system two-dimensional (2D) 119Sn/1H heteronuclear shift correlations can be established for long range coupling constants nJ(119Sn,1H) (n = 4, 6), absolute signs of coupling constants J(Sn,Sn) are accessible by this technique for the first time. This has been demonstrated for tetrakis(trimethylstannyl)allene (1) with 2J(119Sn,117Sn) (>0) and 4J(Sn. 117Sn) (<0) and for tris(trimethylstannyl)phosphane (2) and bis(trimethvlstannyl)- sulfane (3) with 2J(119Sn,117Sn) (<0).


1986 ◽  
Vol 64 (7) ◽  
pp. 1322-1325
Author(s):  
Ted Schaefer ◽  
Rudy Sebastian ◽  
Glenn H. Penner

The 1H nmr spectra of benzyl chloride in dilute CS2 and acetone-d6 solutions are analyzed. The long-range coupling constants are consistent only with a low-energy conformation in which the C—Cl bond lies in a plane perpendicular to the benzene plane. Geometry optimized computations at the STO 3G level of molecular orbital theory agree with this conclusion and yield a nearly pure twofold barrier to internal rotation of 8.6 kJ/mol. In CS2 solution the long-range couplings yield 8.8 kJ/mol, rising to 11.2 kJ/mol in acetone solution. This increase in the internal barrier in a polar solvent is similar to that found for benzyl fluoride, but in the latter the barrier itself is very much smaller than in benzyl chloride.


1972 ◽  
Vol 50 (16) ◽  
pp. 2575-2585 ◽  
Author(s):  
R. Wasylishen ◽  
J. B. Rowbotham ◽  
L. Ernst ◽  
T. Schaefer

A complete analysis (8-spins) is given of the p.m.r. spectrum of aniline-15N, of the spectra of some haloanilines-15N and of 2-aminoacetophenone-15N. Intermolecular exchange of the amino protons is slow enough for observation of their spin–spin coupling to the ring protons. The magnitudes of the coupling constants between amino protons and 15N or ring protons are a measure of the geometry of the amino group. This is not true of the couplings between 15N and the ring protons. Long-range couplings computed in the CNDO/2 and INDO approximations of molecular orbital theory show points of agreement with experiment. For example, their signs and magnitudes are consistent with a nonplanar but not with a planar conformation of aniline. Couplings from 15N to ring protons are also computed for nitrobenzene.


Sign in / Sign up

Export Citation Format

Share Document