3-Methylpyridine complexes of cobalt(II) and nickel(II) hexafluorophosphate and hexafluoroarsenate. Crystal and molecular structure of Ni(H2O)2(3-CH3C5H4N)6(PF6)2

1983 ◽  
Vol 61 (7) ◽  
pp. 1651-1658 ◽  
Author(s):  
Raymond M. Morrison ◽  
Robert C. Thompson ◽  
James Trotter

Reaction of aqueous solutions containing CO2+ or Ni2+ and PF6−, or AsF6− with excess 3-methylpyridine yields crystals of compounds of composition M(H2O)2(3mpy)6(EF6)2. Blue crystals of diaquohexakis(3-methylpyridine)nickel(II) hexafluorophosphate, C36H46F12NiN6O2P2, are monoclinic, a = 10.497(1), b = 20.074(3), c = 21.836(5) Å, β = 103.93(2)°, Z = 4, space group Cc. The structure was determined with MoKα CAD4 diffractometer data by direct methods, and refined by full-matrix least-squares procedures to R = 0.048 for 2723 reflections with I ≥ 3σ(I). The structure consists of {Ni(3mpy)4[(OH2)(3mpy)]2}2+ cations and PF6− anions. The cation contains a NiN4O2 chromophore with water molecules occupying trans positions of a distorted octahedron about nickel. One additional 3-methylpyridine molecule is H-bonded to each of the water molecules with [Formula: see text] distances of 2.717(11) and 2.719(11) Å. Weak interaction of each water molecule via its second hydrogen atom with a PF6− ion is indicated by the positioning of the anions. The [Formula: see text] distances are 2.958(11) and 2.959(11) Å. Two other complexes of this type, where M is Ni and E is As and where M is Co and E is P, are reported here and on the basis of spectroscopic and magnetic studies are assigned structures similar to the Ni/P complex.Decomposition of the aquo complexes under mild conditions yields compounds of composition M(3mpy)4(EF6)2. Ni(3mpy)4(PF6)2 is assigned a square planar structure with weakly interacting PF6−, anions in axial positions. Both Co(3mpy)4(EF6)2 complexes, where E is P or As, have tetrahedral [Co(3mpy)4]2+ cations and non-coordinated anions.

1976 ◽  
Vol 54 (20) ◽  
pp. 3130-3141 ◽  
Author(s):  
Steven J. Rettig ◽  
James Trotter

Crystals of B,B-bis(p-tolyl)boroxazolidine, 1c, are trigonal, a = 25.1028(9), c = 12.4184(7) Å, Z = 18, space group [Formula: see text]. And crystals of B,B-diphenylboroxazolidine, 1a, are orthorhombic, a = 17.6420(4), b = 14.2527(3), c = 10.205(1) Å, Z = 8, space group Pbca. Both structures were solved by direct methods and were refined by full-matrix least-squares procedures to final R values of 0.057 and 0.040 for 2230 and 1828 reflections with I ≥ 3σ(I) respectively. Both molecules have structures similar to related compounds and feature intermolecular N—H … O hydrogen bonds (N … O = 2.982(2) for 1c and 2.896(2) Å for 1a). Bond lengths are: for 1c; O—C, 1.413(3), O—B, 1.478(3), N—C, 1.488(3), N—B, 1.657(3), C(sp3)—C(sp3), 1.501(4), B—C, 1.616(3) and 1.623(3), mean C—C(ar), 1.395, N—H, 0.93(2) and 0.94(2), mean C(sp3)—H, 1.00, and mean C(ar)—H, 1.00 Å; for 1a; O—C, 1.409(2), O—B, 1.476(2), N—C, 1.489(2), N—B, 1.655(2), C(sp3)—C(sp3), 1.507(3), B—C, 1.613(2) and 1.620(2), mean C—C(ar), 1.391, N—H, 0.93(2) and 0.92(2), mean C(sp3)—H, 1.00, and mean C(ar)—H, 0.98 Å. A statistical analysis of the phenyl C—C distances in compounds 1a, 1b, and 1c has provided an example of statistically significant substituent-induced bond length variation in the phenyl rings.


Author(s):  
M. Bidya Sagar ◽  
K. Ravikumar ◽  
Y. S. Sadanandam

AbstractThe crystal structures of two dihydropyridines were solved by direct methods and refined by full-matrix least-squares procedure. 2,6-Dimethyl-3,5-di[N-methyl]-carbamoyl-4-[3,4-methoxy]phenyl-1,4-dihydropyridine hemihydrate, CBoth compounds crystallize with two molecules in the asymmetric unit. In compound


1989 ◽  
Vol 67 (11) ◽  
pp. 1959-1963 ◽  
Author(s):  
Wolfgang Kliegel ◽  
Steven J. Rettig ◽  
James Trotter

The reaction of N,N′-dihydroxy-N,N′-dimethylmethanediamine with phenylboronic acid leads to the product 1,7-dimethyl-3,5-diphenyl-2,4,6-trioxa-7-aza-1-azonia-3-bora-5-boratabicyclo[3.3.0]octane rather than the expected product 1,5-dimethyl-3-phenyl-1,5-diaza-2,4-dioxa-3-boracyclohexane. The structure of N,N′-dihydroxy-N,N′-dimethylmethanediamine has been determined and is discussed in terms of its reaction with PhB(OH)2. Crystals of N,N′-dihydroxy-N,N′-dimethylmethanediamine are tetragonal, a = 8.5346(3), c = 8.4178(7) Å, Z = 4, space group P421c. The structure was solved by direct methods and was refined by full-matrix least-squares procedures to a final R of 0.036 and Rw of 0.038 for 333 reflections with I ≥ 3σ(I). The structure consists of hydrogen-bonded dimers having exact [Formula: see text] symmetry. Keywords: N,N′-dihydroxy-N,N′-dimethylmethanediamine, crystal structure.


1979 ◽  
Vol 57 (14) ◽  
pp. 1823-1825 ◽  
Author(s):  
Steven J. Rettig ◽  
Alan Storr ◽  
James Trotter

Crystals of bis[methyltris(1-pyrazolyl)gallato]nickel(II) are rhombohedral, a = 9.6670(5), c = 23.893(1) Å, Z = 3, space group [Formula: see text]. The structure was solved by direct methods and was refined by full-matrix least-squares procedures to a final R of 0.030 and Rw = 0.035 for 925 reflections with I ≥ 3σ (I). The crystal structure consists of well separated molecules of [MeGa-(N2C3H3)3]2Ni having exact [Formula: see text] (S6) symmetry and approximate D3d symmetry. The coordination geometry about the nickel atom is octahedral with Ni—N = 2.109(2) Å, N—Ni—N = 90.65(6) and 89.35(6)°. The gallium atom has distorted tetrahedral coordination geometry with Ga—N = 1.939(2), Ga—C = 1.940(4) Å, N—Ga—N = 99.55(6), and N—Ga—C = 118.16(5)°.


1977 ◽  
Vol 55 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Steven J. Rettig ◽  
James Trotter ◽  
W. Kliegel ◽  
D. Nanninga

Crystals of difluoroboron N-methylacethydroxamate are monoclinic, a = 5.097(1), b = 10.653(2), c = 11.520(2) Å, β = 103.57(2)°, Z = 4, space group P21/c. The structure was solved by direct methods and was refined by full-matrix least squares procedures to a final R of 0.056 and Rw of 0.077 for 988 reflections with I ≥ 3σ(I). The structure features a planar five-membered BO2CN ring. Bond lengths (corrected for libration) are: B—F, 1.374(3) and 1.381(3), O—B, 1.496(3) and 1.497(3), O—N, 1.349(2), O—C, 1.346(2), C—N, 1.298(3) and 1.458(3), and C—C, 1.468(3) Å.


1979 ◽  
Vol 57 (2) ◽  
pp. 174-179 ◽  
Author(s):  
A. Wallace Cordes ◽  
Paul F. Schubert ◽  
Richard T. Oakley

The crystal structure of 1,4-diphenyl-2,2′,3,3′,5,5′,6,6′-octamethylcyclo-1,4-diphospha-2,3,5,6-tetrasilahexane, (PhPSi2Me4)2, has been determined by single crystal X-ray diffraction. The crystals are monoclinic, space group P21/c, with a = 9.866(1), b = 11.921(1), and c = 11.324(2) Å, β = 104.31(1)°, Z = 2, and ρcalcd = 1.15 g/cm3. The structure was solved by direct methods and was refined by full-matrix least-squares procedures to a final R of 0.060 and Rw of 0.078, for 1173 reflections with intensities greater than 3σ. The (PhPSi2Me4)2 molecule lies on a crystallographic centre of symmetry, and the six-membered P2Si4 ring has a chair conformation with equatorial phenyl groups. The endocyclic angles at P (104.4(1)°) and Si (104.9(2)°) are intermediate between those found in cyclic hexaphosphine and hexasilane molecules, and the Si—Si and P—Si distances of 2.345(3) and 2.252(4) Å, respectively, correspond to single bond lengths, with no appreciable evidence for secondary pπ → dπ bonding between phosphorus and silicon. The Si—C (1.867(8) Å) and P—C (1.828(7) Å) bond lengths are also normal. The variations in the Si—P—C (101.6(2)°, 108.6(2)°), P—Si—C (range 106.2(3)–120.0(3)°), and Si—Si—C (range 105.8(3)–113.7(3)°) angles indicate that the positions of the exocyclic methyl and phenyl groups are influenced by both intra- and intermolecular steric forces.


1975 ◽  
Vol 53 (5) ◽  
pp. 777-783 ◽  
Author(s):  
Steven J. Rettig ◽  
James Trotter

Crystals of 2,5-bis(2′-hydroxyethylamino)-1,4-benzoquinone are monoclinic, a = 5.020(1), b = 19.238(3), c = 5.214(1) Å, β = 96.15(3)°, Z = 2, space group P21/n. The structure was solved by direct methods and was refined by full-matrix least-squares procedures to a final R of 0.045 for 646 reflections with I ≥ 3σ(I). The benzoquinone ring in the centrosymmetric molecule is slightly, but significantly, nonplanar. Bond distances in the compound (C—C, 1.247 (2) and 1.410 (3), C—N, 1.332 (3) and 1.457 (3), C—C, 1.384–1.514 (3), N—H, 0.89 (3), O—H, 1.07 (5), and C—H, 0.95–1.09 (3) Å) are similar to those in related compounds. The structure features an extensive network of N—H … O (N … O = 2.639 (3) and 3.033 (2) Å) and O—H … O(O … O = 2.757 (3) Å ) hydrogen bonds.


1977 ◽  
Vol 55 (6) ◽  
pp. 958-965 ◽  
Author(s):  
Steven J. Rettig ◽  
James Trotter

Crystals of L-prolinatodiphenylboron are monoclinic, a = 5.9427(5), b = 14.4633(7), c = 8.9654(4) Å, β = 98.423(8)°, Z = 2, space group P21. The structure was solved by direct methods and was refined by full-matrix least-squares procedures to a final R of 0.037 and Rw of 0.053 for 1477 reflections with I ≥ 3σ(I). The proline ring exhibits conformational disorder. The crystal structure consists of discrete molecules linked by N—H … O hydrogen bonds (N … O = 2.893(3) Å) along the short a axis. Intramolecular N—B coordination occurs to form a system of two fused five-membered rings. Bond lengths (corrected for libration) are: N—B, 1.630(3), O—B, 1.529(3), O—C, 1.219(3) and 1.300(3), N—C, 1.506(3) and 1.507(3), C(sp3)–C(sp3), 1.525(4), C(sp2)—C(sp3), 1.517(3), and mean C—C(phenyl), 1.394 Å.


1976 ◽  
Vol 54 (8) ◽  
pp. 1309-1316 ◽  
Author(s):  
Norman Camerman ◽  
Arthur Camerman ◽  
Bibudhendra Sarkar

Glycylglycyl-L-histidine-N-methyl amide is a copper-binding tripeptide designed and synthesized to mimic the copper-transport site of human albumin. Reddish-purple crystals of the copper-tripeptide amide complex (Cu–GGHa), grown at physiological pH, are triclinic, with cell dimensions a = 9.990, b = 9.986, c = 7.682 Å, α = 107.40, β = 91.72, γ = 96.49°, space group P1, Z = two units of Cu–GGHa and two water molecules per cell. The structure was solved by interpretation of a Cu–phased Fourier map containing a great deal of false symmetry, after multiple attempts with direct phasing methods failed. Refinement proceeded to R = 0.036. The conformations of the two Cu–GGHa units are virtually identical. Each copper is tetradentate chelated by the amino terminal nitrogen, the next two peptide nitrogens, and a histidyl nitrogen of a single tripeptide molecule in a mildly distorted square planar arrangement. The Cu…N distances range between 1.90–2.05 Å, with N…Cu…N angles of 165 and 176°. An oxygen atom provides a fifth position weaker interaction in each case, with Cu…O distances of 2.61 and 2.88 Å.


2000 ◽  
Vol 78 (10) ◽  
pp. 1325-1344
Author(s):  
Wolfgang Kliegel ◽  
Gottfried Lubkowitz ◽  
Jens O Pokriefke ◽  
Steven J Rettig ◽  
James Trotter

Synthesis has been carried out of diarylboron chelates of 2- and 3-hydroxynitrones, of 2- and 3-hydroxyoximes, and of 2-carboxynitrones and a 2-carboxyoxime. The structures have been determined from spectroscopic data and from X-ray analyses of 5d, 9a, 11b, and 19. Crystals (at 180 K) of 5d are monoclinic, a = 10.543(2), b = 19.085(4), c = 10.2667(3) Å, β = 90.4978(7)°, Z = 4, space group P21/c; those of 9a are orthorhombic, a = 10.9913(5), b = 14.9329(7), c = 10.2460(13) Å, Z = 4, space group P212121; those of 11b are monoclinic, a = 11.227(2), b = 9.967(2), c = 17.0537(4) Å, β = 105.4179(5)°, Z = 4, space group P21/n; those of 19 are monoclinic, a = 11.1847(15), b = 13.715(3), c = 11.5559(5) Å, β = 104.8730(10)°, Z = 4, space group P21/n. The structures were solved by direct methods and refined by full-matrix least-squares procedures to R(F, I [Formula: see text] 3σ(I)) = 0.049, 0.047, 0.042, and 0.047, respectively, for CCD data for 5d, 9a, 11b, and 19. The four molecules contain five-, seven-, six-, and five-membered rings, respectively, with O-B-N groups in the 5d, 11b, and 19, and O-B-O in 9a; the rings exhibit various deviations from planarity, particularly the seven-membered ring.Key words: diarylboron chelates, hydroxyoximes, hydroxynitrones, carboxyoximes, carboxynitrones, organoboron compounds, crystal structure.


Sign in / Sign up

Export Citation Format

Share Document