An infrared study of the interaction between ethyl N-(diphenylmethylene)glycinate with proton donors: comparison with N-benzylidenemethylamine

1986 ◽  
Vol 64 (12) ◽  
pp. 2305-2309 ◽  
Author(s):  
Marleen Ruysen ◽  
Thérèse Zeegers-Huyskens

The interaction between ethyl N-(diphenylmethylene)glycinate (DPG) and hydroxy proton donors or pyrrole has been investigated by ir spectrometry. The equilibrium constants, enthalpies, and entropies of complex formation have been determined in carbon tetrachloride solution and compared with the data obtained for the complexes involving N-benzylidene-methylamine and the same proton donors. The ir spectra studied mainly in the νOH, νC=N, νC=O, and νC—O regions suggest that hydrogen bond formation occurs at the N atom of the imino group and at the O atom of the carbonyl group. The results are discussed in terms of the basicity at the two acceptor sites and of the accessibility of the lone pair of electrons. The ir spectra of the solid adduct of DPG with HCl show that protonation takes place on the N atom. The protonated structure is possibly stabilized by an intramolecular hydrogen bond.

Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 643 ◽  
Author(s):  
Chi-Tung Yeung ◽  
Wesley Chan ◽  
Wai-Sum Lo ◽  
Ga-Lai Law ◽  
Wing-Tak Wong

The synthesis of a new CF3-containing stereogenic atropisomeric pair of ortho-disubstituted biphenyl scaffold is presented. The atropisomers are surprisingly conformationally stable for isolation. X-ray structures show that their stability comes from an intramolecular hydrogen bond formation from their two hydroxyl groups and renders the spatial arrangement of their peripheral CF3 and CH3 groups very different. The synthesized stereogenic scaffold proved to be effective in catalyzing the asymmetric N-nitroso aldol reaction of enamine and nitrosobenzene. Compared to similar scaffolds without CF3 groups, one of our atropisomer exhibits an increase in enantioselectivity in this reaction.


2000 ◽  
Vol 56 (5) ◽  
pp. 849-856 ◽  
Author(s):  
Clair Bilton ◽  
Frank H. Allen ◽  
Gregory P. Shields ◽  
Judith A. K. Howard

A systematic survey of the Cambridge Structural Database (CSD) has identified all intramolecular hydrogen-bonded ring motifs comprising less than 20 atoms with N and O donors and acceptors. The probabilities of formation Pm of the 50 most common motifs, which chiefly comprise five- and six-membered rings, have been derived by considering the number of intramolecular motifs which could possibly form. The most probable motifs (Pm > 85%) are planar conjugated six-membered rings with a propensity for resonance-assisted hydrogen bonding and these form the shortest contacts, whilst saturated six-membered rings typically have Pm < 10%. The influence of intramolecular-motif formation on intermolecular hydrogen-bond formation has been assessed for a planar conjugated model substructure, showing that a donor-H is considerably less likely to form an intermolecular bond if it forms an intramolecular one. On the other hand, the involvement of a carbonyl acceptor in an intramolecular bond does not significantly affect its ability to act as an intermolecular acceptor and thus carbonyl acceptors display a substantially higher inclination for bifurcation if one hydrogen bond is intramolecular.


2017 ◽  
Vol 70 (5) ◽  
pp. 556 ◽  
Author(s):  
Benjamin D. Roach ◽  
Tai Lin ◽  
Heiko Bauer ◽  
Ross S. Forgan ◽  
Simon Parsons ◽  
...  

Salicylaldehyde hydrazones are weaker copper extractants than their oxime derivatives, which are used in hydrometallurgical processes to recover ~20 % of the world’s copper. Their strength, based on the extraction equilibrium constant Ke, can be increased by nearly three orders of magnitude by incorporating electron-withdrawing or hydrogen-bond acceptor groups (X) ortho to the phenolic OH group of the salicylaldehyde unit. Density functional theory calculations suggest that the effects of the 3-X substituents arise from a combination of their influence on the acidity of the phenol in the pH-dependent equilibrium, Cu2+ + 2Lorg ⇌ [Cu(L–H)2]org + 2H+, and on their ability to ‘buttress’ interligand hydrogen bonding by interacting with the hydrazone N–H donor group. X-ray crystal structure determination and computed structures indicate that in both the solid state and the gas phase, coordinated hydrazone groups are less planar than coordinated oximes and this has an adverse effect on intramolecular hydrogen-bond formation to the neighbouring phenolate oxygen atoms.


2014 ◽  
Vol 81 (1) ◽  
pp. 15-22 ◽  
Author(s):  
V. P. Glazunov ◽  
D. V. Berdyshev ◽  
N. N. Balaneva ◽  
O. S. Radchenko ◽  
V. L. Novikov

2007 ◽  
Vol 5 (4) ◽  
pp. 996-1006 ◽  
Author(s):  
Zenonas Kuodis ◽  
Albertas Rutavičius ◽  
Algirdas Matijoška ◽  
Olegas Eicher-Lorka

AbstractNew hydrazones of 2-(5-thioxo-4,5-dihydro-1,3,4-thiadiazol-2-ylthio)acetohydrazide have been obtained and the percentages of anti/syn - conformers were determined. Based on the analyses of 1H NMR spectra, it was concluded that for hydrazones obtained from the 2- hydroxybenzaldehydes and 2’-hydroxycetophenones the ratio between the anti-and syn-conformers depends on the strength of intramolecular hydrogen bond (IMHB) between the nitrogen atom of the imino group and the proton of the 2-hydroxy group. It was shown that increase in IMHB strength results in stabilization of the anti-conformer in solution.


1973 ◽  
Vol 51 (7) ◽  
pp. 985-990 ◽  
Author(s):  
R. Bicca De Alencastro ◽  
C. Sandorfy

The infrared spectra of solutions containing propane-1-thiol or benzenethiol as proton donors, and pyridine or triethylamine as proton acceptors were measured down to about −100 °C. The dependence of hydrogen bond formation on concentration and temperature was studied at the fundamental and overtone region of the S—H stretching vibration. The predominant species is found to be a 1:1 [Formula: see text] type complex. In addition, evidence was found for the existence of more highly associated species at low temperatures. Thiol–thiol [Formula: see text] type hydrogen bonds are also present in the case of benzenethiol–pyridine mixtures.


2000 ◽  
Vol 14 (3) ◽  
pp. 99-107 ◽  
Author(s):  
Gamal A. Gohar ◽  
Moustafa M. Habeeb

The proton transfer equilibrium constants (KPT) for 1 : 1 complex formation between Chloranilic Acid (CA) and a series ofp- andm‒substituted anilines have been measured in 1,4-dioxane spectrophotometrically. The results supported the concept of amine-solvent hydrogen bond formation (short range solvation effect). Beside, this effect, theKPTvalues were apparently affected by the electron donation power of the aniline ring substituent, which was transmitted to the interaction center via resonance and inductive effects. Linear relationships betweenKPTand σ-Hammett substituent constants, or pKvalues formandpanilines,were obtained verifying the above conclusions. The solute-solvent hydrogen bond formation might increase the reactivity of the aniline nitrogen than would the inductive effect of the alkyl group, in case of CA-N-alkyl aniline complexes. The thermodynamic parameters for the proton transfer complex formation were estimated and it was indicated that the solvent–aniline hydrogen bond formation was preferred in the case ofp-substituted aniline complexes more than in the case of the correspondingm‒isomer. It has been found that the proton transfer process was enthalpy and entropy controlled.


Sign in / Sign up

Export Citation Format

Share Document