The role of catalyst activation in the enantioselective hydrogenation of methyl acetoacetate over silica-supported nickel catalysts

1994 ◽  
Vol 72 (2) ◽  
pp. 372-381 ◽  
Author(s):  
Mark A. Keane

A range of Ni–SiO2 catalysts have been prepared by homogeneous precipitation–deposition and impregnation techniques and modified with aqueous solutions of R-(+)-tartaric acid (TA) to induce enantioselectivity in the asymmetric hydrogenation of a prochiral β-ketoester (methyl acetoacetate) to a β-hydroxyester ((R)-(−)-methyl 3-hydroxybutyrate). The effects of catalyst precursor preparation, nickel loading, and precalcination on the reduction of the precursor were examined and the nature of the resultant nickel particle size distribution is described. The influence of metal–support interactions on the uptake of TA was investigated and data on the corrosive metal leaching and the consequent changes in metal dispersion are presented. Modification of the catalysts with TA not only induced enantioselectivity, but also increased the turnover frequency by up to 15 times that observed for the unmodified surface. The amount of TA adsorbed and the fractional surface coverage by TA is related to the degree of enantiodifferentiation. The effects of variations in supported nickel metal particle sizes (in the overall range of 1.4–13.6 nm) on the reaction rate and enantioselectivity were examined; while the selectivity was independent of metal particle size, the rate of hydrogenation was found to be structure sensitive and a correlation between reaction rate sensitivity and particle size is presented.

2016 ◽  
Vol 25 (2) ◽  
pp. 289-296 ◽  
Author(s):  
Tomas van Haasterecht ◽  
Marten Swart ◽  
Krijn P. de Jong ◽  
Johannes Hendrik Bitter

1982 ◽  
Vol 11 (1) ◽  
pp. 127-130 ◽  
Author(s):  
Hideo Suzuki ◽  
Seiji Takasaki ◽  
Fumio Koga ◽  
Akifumi Ueno ◽  
Yoshihide Kotera ◽  
...  

2018 ◽  
Author(s):  
Ping Peng ◽  
Fang-Fang Li ◽  
Xinye Liu ◽  
Jiawen Ren ◽  
jessica stuart ◽  
...  

The rate of ammonia production by the <u>chemical </u>oxidation of iron, N<sub>2</sub>(from air or as pure nitrogen) and water is studied as a function of (1) iron particle size, (2) iron concentration, (3) temperature, (4) pressureand (5) concentration of the alkaline reaction medium. The reaction meduium consists of an aqueous solution of equal molal concentrations of NaOH and KOH (Na<sub>0.5</sub>K<sub>0.5</sub>OH). We had previously reported on the <u>chemical </u>reaction of iron and nitrogen in alkaline medium to ammonia as an intermediate step in the <u>electrochemical </u>synthesis of ammonia by a nano-sized iron oxide electrocatlyst. Here, the intermediate <u>chemical </u>reaction step is exclusively explored. The ammonia production rate increases with temperature (from 20 to 250°C), pressure (from 1 atm to 15 atm of air or N<sub>2</sub>), and exhibits a maximum rate at an electrolyte concentration of 8 molal Na<sub>0,5</sub>K<sub>0,5</sub>OH in a sealed N<sub>2</sub>reactor. 1-3 µm particle size Fe drive the highest observed ammonia production reaction rate. The Fe mass normalized rate of ammonia production increases with decreasing added mass of the Fe reactant reaching a maximum observed rate of 2.2x10<sup>-4</sup>mole of NH<sub>3</sub>h<sup>-1</sup>g<sup>-1</sup>for the reaction of 0.1 g of 1-3 µm Fe in 200°C 8 molal Na<sub>0.5</sub>K<sub>0.5</sub>OH at 15 atm. Under these conditions 5.1 wt% of the iron reacts to form NH<sub>3</sub>via the reaction N<sub>2</sub>+ 2Fe + 3H<sub>2</sub>O ®2NH<sub>3</sub>+ Fe<sub>2</sub>O<sub>3</sub>.


1979 ◽  
Vol 44 (12) ◽  
pp. 3419-3424
Author(s):  
Karel Mocek ◽  
Erich Lippert ◽  
Dušan Husek ◽  
Emerich Erdös

The effect of particle size (0.33-1.0 mm) of the sodium carbonate on the reactivity of the active sodium carbonate prepared therefrom towards the sulfur dioxide was studied in a fixedbed integral reactor at a temperature of 150 °C. The found dependence of the reaction rate on the particle size exhibits an unexpected course; at sizes of about 0.65 mm, a distinct minimum appears. The reaction rate decreases approximately ten times in the first branch of this dependence. The controlling factor of the reactivity of sodium carbonate, however, remains to be the method of preparing the active form.


Author(s):  
Hiroyuki Tamagawa ◽  
Kyuichi Oyama ◽  
Tsuyoshi Yamaguchi ◽  
Hiroshige Tanaka ◽  
Hideyasu Tsuiki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document