X-ray structures of triphenylphosphine and 1,2,5-triphenylphosphole products with dimethyl acetylenedicarboxylate tetramer

1994 ◽  
Vol 72 (12) ◽  
pp. 2428-2442 ◽  
Author(s):  
Martin B. Hocking ◽  
Frances W. van der Voort Maarschalk

A tetramer of dimethyl acetylenedicarboxylate, tetramethyl 4-methoxy-5-[1,2,3-tris(methoxycarbonyl)-2-cyclopropen-1-yl]-7-oxabicyclo[2.2.1]hepta-2,5-diene-1,2,3,6-tetracarboxylate 3, was recovered from old stocks of the monomer, and was also prepared thermally from the monomer by a variation of a previous method. NMR data and an X-ray crystal structure were determined for a red 1:1 adduct of this ester with triphenylphosphine. This red adduct, tetramethyl 4-methoxy-5-[1,2,3-tris(carbomethoxy)-3-triphenylphosphoranylidenepropen-1-yl]-7-oxabicyclo[2.2.1]hepta-2,5-diene-1,2,3,6-tetracarboxylate 5, crystallized in the triclinic space group P1 (No. 2) with two molecules in the unit cell (a = 12.315(2) Å, b = 12.321(2) Å, c = 14.652(2) Å, α = 110.60(1)°, β = 90.62 (1)°, and γ = 103.22(1)°). Refinement converged at R = 0.0694 (Rw = 0.0986) for 542 parameters using 4714 reflections with I > 2σ(I). Triphenylphosphine oxide did not react with tetramer 3. Reaction of the tetramer of dimethyl acetylenedicarboxylate 3 with 1,2,5-triphenylphosphole gave an orange product with concomitant loss of a furan triester. NMR data confirmed that this was not a simple adduct, and examination of a crystal by X-ray established the structure as the dichloromethane complex of tetramethyl 1,9,10-triphenyl-1-phospha(V)tricyclo[5,2,1,05,10] deca-1,3,5,8-tetraene-2,3,4,6-tetracarboxylate 10. This orange product crystallized in the monoclinic space group P21/c (No. 14) with four molecules in the unit cell (a = 10.056(2) Å, b = 14.280(1) Å, c = 23.892(3) Å, α = 90.0°, β = 94.15(1)°, and γ = 90.0°). Refinement converged at R = 0.0683 (Rw = 0.0710) for 540 parameters using 3180 independent reflections with I > 3σ(I). The tetramer 3 did not react with 1,2,5-triphenylphosphole-1-oxide quickly, but after 9 months gave a white, probably polymeric, product.

1993 ◽  
Vol 71 (11) ◽  
pp. 1873-1889 ◽  
Author(s):  
Martin B. Hocking ◽  
Francies W. Van Der Voort Maarschalk

Dimethyl acetylenedicarboxylate was reacted with 1,2,5-triphenylphosphole under mild conditions, and four products isolated. Regardless of conditions used, every preparation gave low yields of dimethyl 3,6-diphenylphthalate coincident with loss of the phosphorus bridge. NMR data and X-ray crystal structures are provided for a yellow, and a red, 2:1 adduct. The yellow adduct, tetramethyl 1,6,7-triphenyl-6-phospha(V)-tricyclo[7.3.1.01,9]nona-3,5,7-triene-2,3,4,5-tetracarboxylate 6, crystallized in the triclinic space group [Formula: see text] (No. 2) with two molecules in the unit cell. Refinement (a = 11.259(1) Å, b = 12.947(3) Å, c = 13.784(3) Å, α = 112.25(2)°, β = 103.44(1)°, and γ = 101.80(1)°) converged at R = 0.0453 (Rw = 0.0453) for 537 parameters using 2880 reflections with I > 2σ(I). The red adduct, trimethyl 1,2,5-triphenylphosphoranylidene-4-methoxycyclopent-2-ene-5-one-2,3,4-tricarboxylate, an exocyclic phosphorane 8, crystallized in the monoclinic space group P21/c (No. 14) with four molecules in the unit cell. Refinement of this structure (a = 13.233(5) Å, b = 15.712(5) Å, c = 17.191(7) Å, α = 90°, β = 110.35(4)°, and γ = 90°) converged at R = 0.0916 (Rw = 0.0937) for 400 parameters using 2052 reflections with I > 2.5σ(I). Small amounts of a white or buff amorphous material, which could represent a polymeric product from the lost phosphorus bridge, were also obtained. Thermal rearrangement of the yellow adduct gave a colourless 6,5,3 tricyclic isomer 11, possibly via the isomeric cyclopropyl derivative 15 or the nine-membered phosphonin 7. The structure of 11 was confirmed by mild oxidation of the colourless rearrangement product to its P-oxide. This product, tetramethyl 2,3,6-triphenyl-2-phosphatricyclo[6.1.01,8.05,9]-2-oxonona-3,6-diene-1,7,8,9-tetracarboxylate 12, was also colourless. It crystallized in the orthorhombic space group Pbc21 (No. 29) with four pairs of molecules in the unit cell. Refinement of this structure (a = 8.918(1) Å, b = 22.605(4) Å, and c = 30.169(6) Å) converged at R = 0.0747 (Rw = 0.0757) for 321 parameters using 3255 reflections with I > 3σ(I). Unequivocal structures for these adducts and derivatives finally confirms, and establishes further understanding of, the complex reactions of the triphenylphosphole with dimethyl acetylenedicarboxylate.


1994 ◽  
Vol 49 (3) ◽  
pp. 430-433 ◽  
Author(s):  
Hans-Dieter Hausen ◽  
Jochen Tödtmann ◽  
Johann Weidlein

AbstractN-M ethyl-2-dimethylaluminium pyrrolide, (CH3)2Al -C4H3NCH3, crystallizes in the triclinic space group P1̄ with the lattice constants a = 700.5(1), b = 725.9(1), c = 886.8(1) pm, α = 67.69(1)°, β = 70.99(1)°, γ = 88.48(1)°, and Z = 2. This compound is isotypic with the gallium homologue [1], the shortest metal-ring contact between the two molecules of one unit cell decreases to 228.6 pm. N-dimethylgallium tetramethylpyrrolide has been synthesized from Li-N (CCH3)4 and (CH3)2GaCl. This “π-associate” crystallizes in the monoclinic space group P21/c with the lattice parameters a = 989.9(2), b = 1305.4(3), c = 878.3(2) pm, β - 112.73(1)° and 4 units per cell. Again two centrosymmetrically orientated molecules form a dimer by short (224.0 pm) intermolecular “Ga - πC ” contacts but the structure differs significant from the structure of the indium homologue [1].


1995 ◽  
Vol 50 (7) ◽  
pp. 1018-1024 ◽  
Author(s):  
Axel Michalides ◽  
Dagmar Henschel ◽  
Armand Blaschette ◽  
Peter G. Jones

In a systematic search for supramolecular complexes involving all combinations of the cyclic polyethers 12-crown-4 (12C4), 15-crown-5 (15C 5), 18-crown-6 (18C 6) and dibenzo- 18-crown-6 (DB -18C6), and the geminal di- or trisulfones H2C(SO 2Me)2, H2C (SO2Et)2 and HC (SO2Me)3-n (SO2Et)n (n = 0 -3 ) , only the following four complexes could be isolated and unequivocally characterized by elemental analysis and 1H NMR spectroscopy: [(12C4){H2C (SO2Et)2}2] (3), [(18C6){H2C (S O2Me)2}] (4), [(DB -18C 6){H2C (SO2Et)2}] (5) and [(D B -18C 6)2{HC (SO2Me )(SO2Et)2}3] (6). The structure of 3 (triclinic, space group P1̄) consists of crystallographically centrosymmetric formula units, in which the disulfone molecules are bonded on each side of the ring by two C -H ··· O(crown) interactions originating from the central methylene group (H···O 213 pm) and from the methylene group of one EtSO2 moiety ( H ··· O 237 pm). Formula units related by translation are connected into parallel strands by a third type of reciprocal C -H ···O bond (H ···O 232 pm) between the second H atom of the central methylene group and a sulfonyl oxygen atom of the adjacent unit. The structure of 4 (monoclinic, space group C2/c) showed severe disorder of the crown ether and could not be refined satisfactorily. Compounds 5 and 6 crystallized as long and extremely thin fibres, indicative of linear-polymeric supramolecular structures; single crystals for X-ray crystallography were not available.


2005 ◽  
Vol 60 (9) ◽  
pp. 978-983 ◽  
Author(s):  
Sevim Hamamci ◽  
Veysel T. Yilmaz ◽  
William T. A. Harrison

Two new saccharinato-silver(I) (sac) complexes, [Ag(sac)(ampy)] (1), and [Ag2(sac)2(μ-aepy)2] (2), [ampy = 2-(aminomethyl)pyridine, aepy = 2-(2-aminoethyl)pyridine], have been prepared and characterized by elemental analysis, IR spectroscopy, thermal analysis and single crystal X-ray diffraction. Complexes 1 and 2 crystallize in the monoclinic space group P21/c and triclinic space group P1̄, respectively. The silver(I) ions in both complexes 1 and 2 exhibit a distorted T-shaped AgN3 coordination geometry. 1 consists of individual molecules connected into chains by N-H···O hydrogen bonds. There are two crystallographically distinct dimers in the unit cell of 2 and in each dimer, the aepy ligands act as a bridge between two silver(I) centers, resulting in short argentophilic contacts [Ag1···Ag1 = 3.0199(4) Å and Ag2···Ag2 = 2.9894(4) Å ]. Symmetry equivalent dimers of 2 are connected by N-H···O hydrogen bonds into chains, which are further linked by aromatic π(py)···π(py) stacking interactions into sheets.


1985 ◽  
Vol 40 (1) ◽  
pp. 13-18 ◽  
Author(s):  
Kay Jansen ◽  
Kurt Dehnicke ◽  
Dieter Fenske

The syntheses and IR spectra of the complexes [Mo2(O2C-Ph)4X2]2⊖ with X = N3, CI, Br and the counter ion PPh4⊕ are reported. The azido and the bromo complexes are obtained from a solution of [Mo2(O2CPh)4] with PPh4N3 in pyridine or by reaction with PPh4Br in CH2Br2, respectively. When (PPh4)2[Mo2(O2CPh)4(N3)2] is dissolved in CH2Cl2, nitrogen is evolved and the complex with X = CI is obtained. The crystal structure of (PPh4)2[Mo2(O2CPh)4Cl2] · 2CH2Cl2 was determined from X-ray diffraction data (5676 observed independent reflexions, R = 0.042). It crystallizes in the monoclinic space group P21/n with four formula units per unit cell; the lattice constants are a = 1549, b = 1400, c = 1648 pm, β = 94.6°. The centrosymmetric [Mo2(O2CPh)4Cl2]2⊖ ion has a rather short Mo-Mo bond of 213 pm, whereas the MoCl bonds are very long (288 pm)


1994 ◽  
Vol 49 (12) ◽  
pp. 1763-1773 ◽  
Author(s):  
Jochen Ellermann ◽  
Jörg Sutter ◽  
Falk A. Knoch ◽  
Matthias Moll ◽  
Walter Bauer

Reaction of (1) in CH2Cl2 with benzimidazole yields . The salt [4]+BPh4- has been prepared in THF by metathesis of [4]+Cl- with NaBPh4. Deprotonation of the cationic ring in [4]+BPh4- was accomplished using 1,8-diazabicyclo[5.4.01,7]undec-7-ene and resulted in the six-membered carbacyclophosphazene (6). Treating 1 with 8 -hydroxyquinoline in CH2Cl2 yields the octahedral cis-complex = 8-oxyquinolinate group). The com pounds [4]+BPh4-, 6 and 7 are characterized by their IR, Raman, 31P{1H} NMR, 13C{1H} NMR, 1H NMR and mass spectra. Crystals suitable for X-ray structure analyses have been obtained for [4]+BPh4- and 7×0.5 CH2Cl2. The colourless plates of [4]+BPh4- crystallize in the triclinic space group P1̄, with the lattice constants a = 1172.7(3), b = 1326.2(3), c = 1806.1(6) pm; α = 100.79(2), β = 103.71(3), γ = 108.18(2)°. The black blocks of 7×0.5 CH2Cl2 crystallize in the monoclinic space group P 21/c with the lattice constants a = 1159.0(10), b = 2008.9(10), c = 2034.6(12) pm; β = 105.86(5)°.


1997 ◽  
Vol 50 (10) ◽  
pp. 991 ◽  
Author(s):  
Ian R. Whittall ◽  
Mark G. Humphrey ◽  
David C. R. Hockless

The structures of Au(4-C≡CC6H4XYC6H4-4′-NO2)(PPh3) (XY = (E )-CH=CH (1), (Z)-CH=CH (2), C≡C (3), N=CH (4)) have been determined by single-crystal X-ray diffraction analyses, refining by full-matrix least-squares analysis. For (1), crystals are triclinic, space group P-1, with a8·847(1), b 17·870(4), c 19·705(3) Å, α116·25(1), β 93·33(1), γ 92·64(2)˚, Z 4, 6747 unique reflections (703 parameters), converging at R 0·025 and Rw 0·029. For (2), crystals are monoclinic, space group P 21/a, with a 10·718(6), b 19·398(5), c14·469(3) Å, β 108·96(2)˚, Z 4, 3295 unique reflections (352 parameters), converging atR 0·040 and Rw 0·034. For (3), crystals are triclinic, space group P-1, with a 10·671(4), b 17·599(7), c 18·220(8) Å, α 116·31(3), β 105·00(4), γ 95·08(4)˚, Z 4, 4828 unique reflections (703 parameters), converging at R 0·043 and Rw 0·030. For (4), crystals are triclinic, space group P-1, with a 8·8314(6), b 17·834(2), c 20·001(2) Å, α 115·249(7), β 90·930(7), γ 94·082(7)˚, Z 4, 4724 unique reflections (703 parameters), converging at R 0·035 and Rw 0·034. Despite the [ligated metal donor]-bridge-[nitro acceptor] composition of these complexes, Au–C and C≡C distances are normal and consistent with minimal allenylidene contribution to the ground-state geometry. Within the 3σ confidence limits, the structural data do not provide evidence for π*-back-bonding in these complexes


1995 ◽  
Vol 50 (4) ◽  
pp. 699-701 ◽  
Author(s):  
Norbert W. Mitzel ◽  
Jürgen Riede ◽  
Klaus Angermaier ◽  
Hubert Schmidbaur

The solid-state structure of N,N-dibenzylhydroxylamine (1) has been determined by single crystal X-ray diffraction. The compound crystallizes in the monoclinic space group P 21/n with four formula units in the unit cell. N,N-dibenzylhydroxylamine dimerizes to give N2O2H2 sixmembered rings as a result of the formation of two hydrogen bonds O - H ··· N in the solid state.


1989 ◽  
Vol 44 (7) ◽  
pp. 778-785 ◽  
Author(s):  
Edmund Hartmann ◽  
Raimund Schmid ◽  
Joachim Strähle

[Ag(MeOC6H4N3C6H4OMe)]2 (1) is formed in THF from AgNO3 , and the triazenide anion, as obtained from the corresponding triazene and Na. 1 crystallizes from pyridine in the form of orange-yellow , air stable crystals with the com position 1·2/3 C5H5N: space group P 1̅ with a = 1468.0(5), b = 1514.1(6), c - 1316.1(3) pm, a = 113.45(3)°, β = 1 1 4 .8 1 (2 )°, γ = 66.78(3)°, Z - 3. The triazenide ion functions as a bridging ligand forming planar (AgN3)2 heterocycles. The unit cell contains two symmetry-independent dinuclear complexes, one of which is centrosymmetrical. The short Ag -Ag distances of 268.0 and 269.8 pm suggest Ag -Ag bonding. The pentaazadienido complexes Ag(RN5R) with R = p -MeO - C6H4 (2), p -EtO - C6H4 (3), p-Cl -C6H4 (4), p -F -C6H4 (5), are obtained from saturated solutions of the pentaazadiene in conc. NH3 and AgNO3 , as explosive, red precipitates which are stable in air. Crystals of 2 and 3 · C5H5N are obtained from pyridine. 2 crystallizes in the monoclinic space group P21/c: a - 583.7(6), b = 1705.1(9), c = 1489.6(9) pm. β = 96.2(1)°, Z = 2; 3 · C5H5N is triclinic (space group P 1̅) with a = 1160.4(4). b = 1671.0(6), c = 509.0(1) pm. a = 97.51(2)°, β = 97.36(2)°, γ = 81.51(3)°, Z = 1. The complexes 2 and 3 are dinuclear with the pentaazadienide ion as a (N1)-η1,(N5)-η1 bridging ligand in 2 and a (N1)-η1, (N3)-η1 bridging ligand in 3. The bridging mode in 3 results in a short Ag -Ag contact of 283.44 pm. The Ag -N distances range from 210.8 to 215.7 pm in 1 and from 215.0 to 220 pm in (2) and (3).


1993 ◽  
Vol 48 (7) ◽  
pp. 1009-1012 ◽  
Author(s):  
Kurt Merzweiler ◽  
Harald Kraus

[{Cp(CO)2Fe}SnCl3] reacts with Na2Se in THF to form the compound [{Cp(CO)2Fe}3ClSn3Se4] 1. 1 crystallizes in the monoclinic space group P21/n with 4 formula units per unit cell. The lattice constants are α = 1435.2(7), b = 1124.4(4), c = 1972.7(12) pm, β = 94.59(4)°. According to the X-ray structure determination 1 contains a bicyclic Sn3Se4 framework.


Sign in / Sign up

Export Citation Format

Share Document