The 1,2,3,5-ditelluradiazolyl [HCN2Te2] species. Theoretical characterizations of the cation, radical, and radical dimers

1996 ◽  
Vol 74 (6) ◽  
pp. 810-818 ◽  
Author(s):  
William M. Davis ◽  
John D. Goddard

Dithia- and diselena-diazolyl radicals (HCN2E2 E = S, Se) and dimers are important building blocks in the design of low-dimensional molecular conductors. Research on the tellurium-based analogues is much rarer. This work reports the molecular and electronic structures of the cation, radical, and radical dimers of 1,2,3,5-ditelluradiazolyl using ab initio theory including electron correlation by Møller–Plesset perturbation theory up to partial fourth order (MP4SDQ). A face-to-face C2v dimer is predicted to be bound with respect to two radicals by approximately 18 kcal/mol. A C2h, dimer also has been studied and is ca. 2 kcal/mol less stable than the C2v conformer. Relaxing symmetry constraints on the dimers led to more energetically stable structures at the Hartree–Fock level but the C2v structure remains the most stable at a level of theory including electron correlation effects. The results for the Te compounds along with our earlier research on the S and Se analogues provide predictions for the geometries, vibrational frequencies, and ionization potentials for the Te species to assist in future experiments. Key words: tellurium, ab initio, ditelluradiazolyl, dimers, binding.


1999 ◽  
Vol 597 ◽  
Author(s):  
Steven Trohalaki ◽  
Robert J. Zellmer ◽  
Ruth Pachter

AbstractSpangler and He [1,2] have shown that dithienyl polyenes form extremely stable bipolaronic dications when oxidatively doped in solution. Previous theoretical studies applied empirical methods to predict bipolaronic enhancement of hyperpolarizabilities for simple polyenes [3,4]. Here, we employ density functional theory to optimize the gas-phase molecular conformations of neutral, cationic, and dicationic forms of a series of dithienyl polyenes, where the number of ethene units, N, is varied from 1–5. Ab initio Hartree-Fock, generalized valence bond, configuration interaction, and Møller-Plesset calculations demonstrate that the dications are farily well described with a closed shell and therefore have little biradicaloid character. Second hyperpolarizabilities, γ, are subsequently calculated using ab initio Hartree-Fock theory and a finite field methodology. As expected, γ increases with the number of ethene units for a given molecular charge. The cations also show the largest increase in γ with N. For a given value of N, the cations display the largest γ values. However, if we treat the dication as a triplet, which might be present in solution, then it displays the largest γ.



1996 ◽  
Vol 74 (6) ◽  
pp. 910-917 ◽  
Author(s):  
Zhi-Xiang Wang ◽  
Ruo-Zhuang Liu ◽  
Ming-Bao Huang ◽  
Zhonghua Yu

The mechanisms of the reactions of CH (X2II) with NH3, H2O, and HF have been studied by means of ab initio molecular orbital calculations incorporating electron correlation with Møller–Plesset perturbation theory up to the second order. For each of the three CH reactions, the insertion path has been found in the potential energy surface; in the calculated insertion path there exists an intermediate complex prior to the transition state that has a lower energy than the reactants. Energetic results indicate that insertion paths are favourable channels for these CH reactions, which is in line with proposals based on kinetic experiments. Key words: CH radical, ammonia, water, hydrogen fluoride, reaction mechanism.



1988 ◽  
Vol 66 (9) ◽  
pp. 2279-2284 ◽  
Author(s):  
R. E. Hoffmeyer ◽  
W.-T. Chan ◽  
J. D. Goddard ◽  
R. T. Oakley

Ab initio molecular orbital and Møller–Plesset perturbation theory calculations have been carried out on two model dithiatriazines RCN3S2 (R = H, NH2). With geometry optimization and the inclusion of electron correlation both of these dithiatriazines are predicted to be ground state singlets. Both molecules have low-lying triplet excited states, with energy gaps of 6.6 (R = H) and 13.0 (R = NH2) kcal mol−1. The singlet dithiatriazines distort from high (C2v) to low (Cs) symmetry, and these changes are important in determining the relative energies of the singlet and triplet molecules. The structural distortions experienced by these molecules are related to Hartree–Fock and Jahn–Teller instabilities in other thiazene heterocycles.



2000 ◽  
Vol 654 ◽  
Author(s):  
E. Heifets ◽  
E.A. Kotominc ◽  
R.I. Eglitisc ◽  
R.E. Cohen

AbstractThe (100) and (110) surface relaxations are calculated for SrTiO3 and BaTiO3 perovskite thin films by means of a semi-empirical shell model (SM) for different surface terminations. Our SM results for the (100) surface structure are in good agreement with our present ab initio Hartree-Fock calculations with electron correlation corrections, previous ab initio pseudopotential calculationsand LEED experiments. The surface energy for the Ba-, Sr-, TiO- terminated (110) surfaces is found much larger than that for the (100) one. In contrast, the surface energy for the asymmetric O-termination, where outermost O atoms are strongly on-plane displaced, is the lowest for all (110) terminations and thus the most stable.



2000 ◽  
Vol 78 (12) ◽  
pp. 1575-1586 ◽  
Author(s):  
John M Cullen

Using a second quantized formulation, an approximate diatomics in molecules (DIM) theory is presented in which all three- and four-centered electronic integrals are neglected. To ameliorate the effects of this approximation, the DIM one electron operator is constructed so that the true ab initio first-order density matrix and total energy are reproduced at the Hartree–Fock level. The resulting model was extensively tested for a variety of basis sets for its capability of capturing both the dynamic and nondynamic components of the electron correlation energy as well as the energies of excited electronic states. A modified method in which the DIM one-electron operator is formed from the initial extended Hückel guess of the Hartree–Fock orbitals was also found to produce excellent results.Key words: DIM, electron correlation energy, excited states, semiempirical.





Sign in / Sign up

Export Citation Format

Share Document