Removal of human enteric viruses and indicator microorganisms from domestic wastewater by aerated lagoons

2010 ◽  
Vol 56 (2) ◽  
pp. 188-194 ◽  
Author(s):  
Annie Locas ◽  
Veronica Martinez ◽  
Pierre Payment

Aerated lagoons offer a low-cost and simple approach to treating domestic wastewater in small municipalities. The objective of the current study was to evaluate, for each cell in the lagoons, the removal of indicator microorganisms and human enteric viruses under warm (summer) and cold (early spring) conditions. The two sites are located in southwest Quebec, Canada. Samples were assayed for thermotolerant coliforms, enterococci, Clostridium perfringens , somatic and male-specific coliphages, and culturable human enteric viruses (HEV). The results show higher removal under warm ambient conditions for all microorganisms. Thermotolerant coliforms and enterococci were removed to a greater extent than C. perfringens and HEV. HEV removal was only observed in warm ambient conditions. The removal of coliphages was different from the observed removal of HEV. The use of coliphages as surrogates for HEV has been proposed, but this does not seem appropriate for aerated lagoons, as the removal of coliphages overestimates the removal of HEV. Given the low observed removal of HEV during this study, the effluents remain a significant source of pathogens that can affect drinking water treatment plants drawing their raw water from receiving streams. Ultraviolet disinfection of treated wastewater effluent is a possible solution.

2018 ◽  
Vol 23 (7) ◽  
Author(s):  
Maxime Bisseux ◽  
Jonathan Colombet ◽  
Audrey Mirand ◽  
Anne-Marie Roque-Afonso ◽  
Florence Abravanel ◽  
...  

Background Human enteric viruses are resistant in the environment and transmitted via the faecal-oral route. Viral shedding in wastewater gives the opportunity to track emerging pathogens and study the epidemiology of enteric infectious diseases in the community. Aim: The aim of this study was to monitor the circulation of enteric viruses in the population of the Clermont-Ferrand area (France) by analysis of urban wastewaters. Methods: Raw and treated wastewaters were collected between October 2014 and October 2015 and concentrated by a two-step protocol using tangential flow ultrafiltration and polyethylene glycol precipitation. Processed samples were analysed for molecular detection of adenovirus, norovirus, rotavirus, parechovirus, enterovirus (EV), hepatitis A (HAV) and E (HEV) viruses. Results: All wastewater samples (n = 54) contained viruses. On average, six and four virus species were detected in, respectively, raw and treated wastewater samples. EV-positive samples were tested for EV-D68 to assess its circulation in the community. EV-D68 was detected in seven of 27 raw samples. We collected data from clinical cases of EV-D68 (n = 17), HAV (n = 4) and HEV infection (n = 16) and compared wastewater-derived sequences with clinical sequences. We showed the silent circulation of EV-D68 in September 2015, the wide circulation of HAV despite few notifications of acute disease and the presence in wastewater of the major HEV subtypes involved in clinical local cases. Conclusion: The environmental surveillance overcomes the sampling bias intrinsic to the study of infections associated with hospitalisation and allows the detection in real time of viral sequences genetically close to those reported in clinical specimens.


2003 ◽  
Vol 48 (2) ◽  
pp. 97-104 ◽  
Author(s):  
R. Stott ◽  
E. May ◽  
D.D. Mara

Parasite removal and low cost systems for wastewater treatment have become increasingly important requirements in developed and developing countries to safeguard public health from wastewater-associated intestinal diseases. Pilot and field-scale ponds and wetlands in Brazil and Egypt have been investigated for the fate and removal of eggs of human intestinal parasites from domestic wastewater. In northeast Brazil, parasite removal was investigated for a series of five waste stabilisation ponds treating raw wastewater. In Egypt, parasite removal was studied for Gravel Bed Hydroponic constructed wetlands treating partially treated wastewater. Influents to ponds and wetlands contained a variety of parasite helminth eggs (e.g. Ascaris, hookworm, Trichuris, and Hymenolepis spp.). The ponds consistently removed parasite eggs though rate of removal by individual ponds may have been related to influent egg numbers and extent of short-circuiting. Parasite eggs were reduced on average by 94% and 99.9% in the anaerobic and facultative ponds respectively. No eggs were found in effluent from the second maturation pond. In the wetland system, parasite removal varied with reedbed length. The majority of parasite eggs were retained within the first 25 m. Parasite eggs were reduced on average by 98% after treatment in 50 m beds and completely removed after treatment in 100 m beds.


2001 ◽  
Vol 47 (3) ◽  
pp. 188-193 ◽  
Author(s):  
Pierre Payment ◽  
Robert Plante ◽  
Patrick Cejka

Pathogens and fecal indicator bacteria occurrence and removal were studied for a period of 6 months at the Montreal Urban Community wastewater treatment facility. With a capacity of about 7.6 million cubic metres per day (two billion U.S. gallons per day), it is the largest primary physico-chemical treatment plant in America. The plant discharges a nondisinfected effluent containing about 20 mg/L of suspended matter and 0.5 mg/L of total phosphorus on the basis of average annual concentrations. BDO5 (annual mean) is 75 mg/L before treatment and 32 mg/L after treatment. Samples were collected for a period of 6 months, and they demonstrated that the plant was not efficient at removing indicator bacteria and the pathogens tested. Fecal coliforms were the most numerous of the indicator bacteria and their removal averaged 25%. Fecal streptococci removal was 29%, while Escherichia coli removal was 12%. In untreated sewage, fecal coliforms, E. coli, and human enteric viruses were more numerous in summer and early autumn. Fecal streptococci counts remained relatively similar throughout the period. Clostridium perfringens removal averaged 51%. Giardia cysts levels were not markedly different throughout the study period, and 76% of the cysts were removed by treatment. Cryptosporidium oocyst counts were erratic, probably due to the methods, and removal was 27%. Human enteric viruses were detected in all samples of raw and treated wastewater with no removal observed (0%). Overall, the plant did not perform well for the removal of fecal indicator bacteria, human enteric viruses, or parasite cysts. Supplementary treatment and disinfection were recommended to protect public health. Various alternatives are being evaluated.


1991 ◽  
Vol 37 (2) ◽  
pp. 154-157 ◽  
Author(s):  
Pierre Payment

The elimination of human enteric viruses, coliphages, and Clostridium perfringens was studied during a conventional complete drinking-water treatment process. The respective concentrations (geometric mean) of these microorganisms in 100-L samples of river water were, respectively, as follows: viruses, 79 mpniu (most probable number of infectious units) per 100 L, coliphages, 6565 pfu (plaque-forming units) per 100 L, and clostridia, 11 349 cfu (colony-forming units) per 100 L. After pre-disinfection, flocculation with alum, and settling, human enteric viruses were not detected in any of the 100-L samples (<4 mpniu/100 L), but coliphages were detected in 7 of 14 samples and clostridia in 15 of 16 samples. In filtered water samples, human enteric viruses were detected in 2 of 31 samples, coliphages in 10 of 33, and clostridia in 17 of 33. Finished water was free of human enteric viruses (0/162 samples), but coliphages were detected in one sample (1.5 pfu/100 L) and clostridia in three, at 1.0, 4.1, and 7.0 cfu/100 L. It thus appears that coliphages and clostridia, which are present in larger numbers than viruses in river water and which may have similar resistance to drinking-water treatments, may be useful for estimating the level of treatment attained when large volumes of water (1000 L or greater) are sampled. Key words: drinking water, removal, bacterial viruses, coliphages, Clostridium, enteric viruses.


1995 ◽  
Vol 32 (3) ◽  
pp. 291-294 ◽  
Author(s):  
A. S. Juwarkar ◽  
B. Oke ◽  
A. Juwarkar ◽  
S. M. Patnaik

The paper highlights the use of constructed wetlands for the removal of BOD, nitrogen, phosphorus and pathogens from primary treated wastewater. The constructed wetland consists of emergent macrophytesTypha latifolia and Phragmites carca grown in cement pipes having 0.1256 m2 area and 0.8 meter deep filled with 30% soil and 70% sand. The hydraulic loadings were maintained at the rate of 5 cm per day. The BOD removal in wetlands was observed to be 78-91%. The nitrogen content reduced from 30.8 mgl−1 to 9.5 mgl−1 whereas phosphate in treated wetland effluent was 9.6 mgl−1 as against the mean inflow total phosphate content of 14.9 mgl−1. The country’s first constructed wetland, of 90m × 30m size, was installed at Sainik School, Bhubaneshwar in the State of Orissa. Two types of macrophytes, viz. Typha latifolia and Phragmites carca, were planted. At present 180-200 m3 wastewater is being treated through wetland. BOD and nitrogen removal were 67-90% and 58-63% respectively. The constructed wetland treatment was found to be efficient in removal of BOD and N, and economically viable. The system, being easy to operate and low cost, can provide an economical viable solution for wastewater management.


2013 ◽  
Vol 67 (2) ◽  
pp. 380-386
Author(s):  
Sasirot Khamkure ◽  
Edmundo Peña Cervantes ◽  
Alejandro Zermeño González ◽  
Rubén López Cervantes ◽  
Prócoro Gamero Melo ◽  
...  

The reclamation of domestic wastewater for irrigation is one alternative approach to solve the water scarcity crisis, but it is essential to control the microbiological quality of wastewater used for irrigation. The removal of thermotolerant coliforms, also known as faecal coliforms (FC), from treated domestic wastewater by intermittent media infiltration (IMI) in column was studied. The columns were filled with natural filter media (soil, soil/charcoal and zinc-modified zeolite, Zeo-Zn), and wastewater, IMI-treated wastewater and disinfected wastewater were compared. The numbers of residual FC on Swiss chard (Beta vulgaris) and in agricultural soil were determined over a 4-month period. The column using Zeo-Zn had a higher FC removal efficiency (2.98 log) than columns with other filter media and disinfection (1.87–2.57 log) due to the bactericidal properties of Zn2+. The treatment of wastewater using Zeo-Zn and disinfection both decreased the accumulation of FC on plants and in soil to approximately 1–20 MPN/g dry matter. IMI-treated wastewater using the column with Zeo-Zn was suitable for unrestricted agricultural use, complied with Mexican regulations (as did disinfected wastewater) and had a low risk of FC contamination of plants and soil.


Sign in / Sign up

Export Citation Format

Share Document