scholarly journals Deriving Stand Structural Complexity from Airborne Laser Scanning Data—What Does It Tell Us about a Forest?

2020 ◽  
Vol 12 (11) ◽  
pp. 1854
Author(s):  
Dominik Seidel ◽  
Peter Annighöfer ◽  
Martin Ehbrecht ◽  
Paul Magdon ◽  
Stephan Wöllauer ◽  
...  

The three-dimensional forest structure is an important driver of several ecosystem functions and services. Recent advancements in laser scanning technologies have set the path to measuring structural complexity directly from 3D point clouds. Here, we show that the box-dimension (Db) from fractal analysis, a measure of structural complexity, can be obtained from airborne laser scanning data. Based on 66 plots across different forest types in Germany, each 1 ha in size, we tested the performance of the Db by evaluating it against conventional ground-based measures of forest structure and commonly used stand characteristics. We found that the Db was related (0.34 < R < 0.51) to stand age, management intensity, microclimatic stability, and several measures characterizing the overall stand structural complexity. For the basal area, we could not find a significant relationship, indicating that structural complexity is not tied to the basal area of a forest. We also showed that Db derived from airborne data holds the potential to distinguish forest types, management types, and the developmental phases of forests. We conclude that the box-dimension is a promising measure to describe the structural complexity of forests in an ecologically meaningful way.

2010 ◽  
Vol 40 (12) ◽  
pp. 2427-2438 ◽  
Author(s):  
Md. Nurul Islam ◽  
Mikko Kurttila ◽  
Lauri Mehtätalo ◽  
Timo Pukkala

Errors in inventory data may lead to inoptimal decisions that ultimately result in financial losses for forest owners. We estimated the expected monetary losses resulting from data errors that are similar to errors in laser-based forest inventory. The mean loss was estimated for 67 stands by simulating 100 realizations of inventory data for each stand with errors that mimic those in airborne laser scanning (ALS) based inventory. These realizations were used as input data in stand management optimization, which maximized the present value of all future net incomes (NPV). The inoptimality loss was calculated as the difference between the NPV of the optimal solution and the true NPV of the solution obtained with erroneous input data. The results showed that the mean loss exceeded €300·ha–1 (US$425·ha–1) in 84% of the stands. On average, the losses increased with decreasing stand age and mean diameter. Furthermore, increasing errors in the basal area weighted mean diameter and basal area of spruce were found to significantly increase the loss. It has been discussed that improvements in the accuracy of ALS-based inventory could be financially justified.


2020 ◽  
Vol 12 (3) ◽  
pp. 413 ◽  
Author(s):  
Adrián Pascual ◽  
Juan Guerra-Hernández ◽  
Diogo N. Cosenza ◽  
Vicente Sandoval

The level of spatial co-registration between airborne laser scanning (ALS) and ground data can determine the goodness of the statistical inference used in forest inventories. The importance of positioning methods in the field can increase, depending on the structural complexity of forests. An area-based approach was followed to conduct forest inventory over seven National Forest Inventory (NFI) forest strata in Spain. The benefit of improving the co-registration goodness was assessed through model transferability using low- and high-accuracy positioning methods. Through the inoptimality losses approach, we evaluated the value of good co-registered data, while assessing the influence of forest structural complexity. When using good co-registered data in the 4th NFI, the mean tree height (HTmean), stand basal area (G) and growing stock volume (V) models were 2.6%, 10.6% and 14.7% (in terms of root mean squared error, RMSE %), lower than when using the coordinates from the 3rd NFI. Transferring models built under poor co-registration conditions using more precise data improved the models, on average, 0.3%, 6.0% and 8.8%, while the worsening effect of using low-accuracy data with models built in optimal conditions reached 4.0%, 16.1% and 16.2%. The value of enhanced data co-registration varied between forests. The usability of current NFI data under modern forest inventory approaches can be restricted when combining with ALS data. As this research showed, investing in improving co-registration goodness over a set of samples in NFI projects enhanced model performance, depending on the type of forest and on the assessed forest attributes.


2019 ◽  
Vol 433 ◽  
pp. 111-121 ◽  
Author(s):  
Syed Adnan ◽  
Matti Maltamo ◽  
David A. Coomes ◽  
Antonio García-Abril ◽  
Yadvinder Malhi ◽  
...  

2020 ◽  
pp. 95
Author(s):  
P. Crespo-Peremarch ◽  
L. A. Ruiz

<p class="Bodytext">This PhD thesis addresses the development of full-waveform airborne laser scanning (ALS<sub>FW</sub>) processing and analysis methods to characterize the vertical forest structure, in particular the understory vegetation. In this sense, the influence of several factors such as pulse density, voxel parameters (voxel size and assignation value), scan angle at acquisition, radiometric correction and regression methods is analyzed on the extraction of ALS<sub>FW</sub> metric values and on the estimate of forest attributes. Additionally, a new software tool to process ALS<sub>FW</sub> data is presented, which includes new metrics related to understory vegetation. On the other hand, occlusion caused by vegetation in the ALS<sub>FW</sub>, discrete airborne laser scanning (ALS<sub>D</sub>) and terrestrial laser scanning (TLS) signal is characterized along the vertical structure. Finally, understory vegetation density is detected and determined by ALS<sub>FW</sub> data, as well as characterized by using the new proposed metrics.</p>


2019 ◽  
Vol 11 (6) ◽  
pp. 661 ◽  
Author(s):  
Sami Ullah ◽  
Matthias Dees ◽  
Pawan Datta ◽  
Petra Adler ◽  
Mathias Schardt ◽  
...  

Digital stereo aerial photographs are periodically updated in many countries and offer a viable option for the regular update of information on forest variables. We compared the potential of image-based point clouds derived from three different sets of aerial photographs with airborne laser scanning (ALS) to assess plot-level forest attributes in a mountain environment. The three data types used were (A) high overlapping pan-sharpened (80/60%); (B) high overlapping panchromatic band (80/60%); and (C) standard overlapping pan-sharpened stereo aerial photographs (60/30%). We used height and density metrics at the plot level derived from image-based and ALS point clouds as the explanatory variables and Lorey’s mean height, timber volume, and mean basal area as the response variables. We obtained a RMSE = 8.83%, 29.24% and 35.12% for Lorey’s mean height, volume, and basal area using ALS data, respectively. Similarly, we obtained a RMSE = 9.96%, 31.13%, and 35.99% and RMSE = 11.28%, 31.01%, and 35.66% for Lorey’s mean height, volume and basal area using image-based point clouds derived from pan-sharpened stereo aerial photographs with 80/60% and 60/30% overlapping, respectively. For image-based point clouds derived from a panchromatic band of stereo aerial photographs (80%/60%), we obtained an RMSE = 10.04%, 31.19% and 35.86% for Lorey’s mean height, volume, and basal area, respectively. The overall findings indicated that the performance of image-based point clouds in all cases were as good as ALS. This highlights that in the presence of a highly accurate digital terrain model (DTM) from ALS, image-based point clouds offer a viable option for operational forest management in all countries where stereo aerial photographs are updated on a routine basis.


2019 ◽  
Vol 11 (3) ◽  
pp. 261 ◽  
Author(s):  
Darío Domingo ◽  
Rafael Alonso ◽  
María Teresa Lamelas ◽  
Antonio Luis Montealegre ◽  
Francisco Rodríguez ◽  
...  

This study assesses model temporal transferability using airborne laser scanning (ALS) data acquired over two different dates. Seven forest attributes (i.e. stand density, basal area, squared mean diameter, dominant diameter, tree dominant height, timber volume, and total tree biomass) were estimated using an area-based approach in Mediterranean Aleppo pine forests. Low-density ALS data were acquired in 2011 and 2016 while 147 forest inventory plots were measured in 2013, 2014, and 2016. Single-tree growth models were used to generate concomitant field data for 2011 and 2016. A comparison of five selection techniques and five regression methods were performed to regress field observations against ALS metrics. The selection of the best regression models fitted for each stand attribute, and separately for both 2011 and 2016, was performed following an indirect approach. Model performance and temporal transferability were analyzed by extrapolating the best fitted models from 2011 to 2016 and inversely from 2016 to 2011 using the direct approach. Non-parametric support vector machine with radial kernel was the best regression method with average relative % root mean square error differences of 2.13% for 2011 models and 1.58% for 2016 ones.


2011 ◽  
Vol 41 (3) ◽  
pp. 583-598 ◽  
Author(s):  
Jussi Peuhkurinen ◽  
Lauri Mehtätalo ◽  
Matti Maltamo

Airborne laser scanning based forest inventories employ two major methods: individual tree detection (ITD) and the area-based statistical approach (ABSA). ITD is based on the assumption that trees are of a certain form and can be delineated using airborne laser scanning techniques, whereas ABSA is an empirical method based on the relations between area-level forest attributes and laser echo height distributions. These two methods are compared here within the same test area in terms of their usefulness for estimating mean forest stand characteristics and tree size distributions. All evaluations were performed using leave-one-out cross validation. The average errors in volume and basal area did not differ significantly between the methods. ABSA resulted in overall better accuracies when estimating the diameter and height of the basal area median tree and the number of stems, whereas ITD produced significantly biased estimates for the number of stems and the mean tree size. Tree size distributions were estimated with slightly better accuracy using ABSA. More comprehensive investigations revealed that both methods were not able to estimate forest structure (tree size distribution and spatial distribution of tree locations), which in turn, affected the estimation accuracies.


2016 ◽  
Vol 67 ◽  
pp. 346-357 ◽  
Author(s):  
Nicholas C. Coops ◽  
Piotr Tompaski ◽  
Wiebe Nijland ◽  
Gregory J.M. Rickbeil ◽  
Scott E. Nielsen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document