Microbial biomass and activity in the humus layer following burning: short-term effects of two different fires

1993 ◽  
Vol 23 (7) ◽  
pp. 1275-1285 ◽  
Author(s):  
Janna Pietikäinen ◽  
Hannu Fritze

During a 3-year study, soil microbial biomass C and N, length of the fungal hyphae, soil respiration, and the percent mass loss of needle litter were recorded in coniferous forest soil humus layers following a prescribed burning (PB) treatment or a forest fire simulation (FF) treatment (five plots per treatment). Unburned humus from adjacent plots served as controls (PC and FC, respectively). Prescribed burning was more intensive than the forest fire, and this was reflected in all the measurements taken. The amounts of microbial biomass C and N, length of fungal hyphae, and soil respiration in the PB area did not recover to their controls levels, whereas unchanged microbial biomass N and recovery of the length of the fungal hyphae to control levels were observed in the FF area. The mean microbial C/N ratio was approximately 7 in all the areas, which reflected the C/N ratio of the soil microbial community. Deviation from this mean value, as observed during the first three samplings from the PB area (3, 18, and 35 days after fire treatment), suggested a change in the composition of the microbial community. Of the two treated areas, the decrease in soil respiration (laboratory measurements) was much more pronounced in the PB area. However, when the humus samples from both areas were adjusted to 60% water holding capacity, no differences in respiration capacity were observed. The drier humus, due to higher soil temperatures, of the PB area is a likely explanation for the low soil respiration. Lower soil respiration was not reflected in lower litter decomposition rates of the PB area, since there was a significantly higher needle litter mass loss during the first year in the PB area followed by a decline to the control level during the second year. Consistently higher mass losses were recorded in the FC area than in the FF area.

1998 ◽  
Vol 78 (2) ◽  
pp. 283-290 ◽  
Author(s):  
P. Rochette ◽  
E. G. Gregorich

Application of manure and fertilizer affects the rate and extent of mineralization and sequestration of C in soil. The objective of this study was to determine the effects of 3 yr of application of N fertilizer and different manure amendments on CO2 evolution and the dynamics of soil microbial biomass and soluble C in the field. Soil respiration, soluble organic C and microbial biomass C were measured at intervals over the growing season in maize soils amended with stockpiled or rotted manure, N fertilizer (200 kg N ha−1) and with no amendments (control). Manure amendments increased soil respiration and levels of soluble organic C and microbial biomass C by a factor of 2 to 3 compared with the control, whereas the N fertilizer had little effect on any parameter. Soil temperature explained most of the variations in CO2 flux (78 to 95%) in each treatment, but data from all treatments could not be fitted to a unique relationship. Increases in CO2 emission and soluble C resulting from manure amendments were strongly correlated (r2 = 0.75) with soil temperature. This observation confirms that soluble C is an active C pool affected by biological activity. The positive correlation between soluble organic C and soil temperature also suggests that production of soluble C increases more than mineralization of soluble C as temperature increases. The total manure-derived CO2-C was equivalent to 52% of the applied stockpiled-manure C and 67% of the applied rotted-manure C. Estimates of average turnover rates of microbial biomass ranged between 0.72 and 1.22 yr−1 and were lowest in manured soils. Manured soils also had large quantities of soluble C with a slower turnover rate than that in either fertilized or unamended soils. Key words: Soil respiration, greenhouse gas, soil carbon


2014 ◽  
Vol 34 (13) ◽  
Author(s):  
张静 ZHANG Jing ◽  
马玲 MA Ling ◽  
丁新华 DING Xinhua ◽  
陈旭日 CHEN Xuri ◽  
马伟 MA Wei

2013 ◽  
Vol 43 (9) ◽  
pp. 777-784 ◽  
Author(s):  
Ya-Lin Hu ◽  
Kangho Jung ◽  
De-Hui Zeng ◽  
Scott X. Chang

Chronic nitrogen (N) and (or) sulfur (S) deposition to boreal forests in the Athabasca oil sands region (AOSR) in Alberta, Canada, has been caused by oil sands mining and extraction/upgrading activities. It is important that we understand the response of microbial community function to chronic N and S deposition as microbial populations mediate soil carbon (C) and N cycles and affect ecosystem resilience. To evaluate the impact of N and (or) S deposition on soil microbial community functions, we conducted a simulated N and S deposition experiment in a boreal mixedwood forest with the following four treatments: control (CK), N addition (+N, 30 kg N·ha−1 as NH4NO3), S addition (+S, 30 kg S·ha−1 as NaSO4), and N plus S addition (+NS, 30 kg N·ha−1 + 30 kg S·ha−1), from 2006 to 2010. Nitrogen and (or) S deposition did not change soil organic carbon, total N, dissolved organic C and N, or soil microbial biomass C and N. Soil microbial community-level physiological profiles, however, were strongly affected by 5 years of N and (or) S addition. Soil β-glucosidase activity in the +NS treatment was greater than that in the +S treatment, and S addition decreased soil arylsulfatase; however, urease and dehydrogenase activities were not affected by the simulated N and (or) S deposition. Our data suggested that N and (or) S deposition strongly affected soil microbial community functions and enzymatic activities without changing soil microbial biomass in the studied boreal forest.


Sign in / Sign up

Export Citation Format

Share Document