Alders increase soil phosphorus availability in a Douglas-fir plantation

1995 ◽  
Vol 25 (10) ◽  
pp. 1652-1657 ◽  
Author(s):  
Christian Paul Giardina ◽  
Steve Huffman ◽  
Dan Binkley ◽  
Bruce A. Caldwell

The effect of red alder (Alnusrubra Bong.) on soil phosphorus (P) availability in conifer forests of the Pacific Northwest has been the focus of several recent studies. One study at the Thompson Research Center in Washington State, found Bray No. 2 extractable P to be lower in soils under pure alder than in soils under adjacent stands of pure conifer. The Thompson study, and others in forests of the Northwest, have also found that the quantity of P in aboveground litter fall is greater for conifer stands mixed with alder than in adjacent pure conifer stands, suggesting equal or greater soil P availability under the influence of alder. We assessed the effect of low densities of red alder on soil P, using a modified Hedley sequential P fractionation scheme, in a Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) plantation in coastal Oregon. We determined that soils under plots with 190 alder stems/ha and 740 Douglas-fir stems/ha had greater inorganic P availability than pure Douglas-fir plots (740 stems/ha). Inorganic P fractions, sequentially extracted from soils at 0–0.15 m depths by anion exchange resins, by sodium hydroxide, and by hydrochloric acid, were 65–225% greater in plots with alder. Soil phosphatase activity was nearly three times greater in plots mixed with alder. No significant pH differences between the treatments were found. We conclude that red alder appears to increase the availability of soil P at our site, but note that increased P supplies may not prevent a P limitation on productivity for either alder or conifers.

2019 ◽  
Vol 99 (3) ◽  
pp. 292-304
Author(s):  
Tandra D. Fraser ◽  
Derek H. Lynch ◽  
Ivan P. O’Halloran ◽  
R. Paul Voroney ◽  
Martin H. Entz ◽  
...  

Soil phosphorus (P) availability may be impacted by management practices, thereby affecting plant P uptake and plant response to P amendments. The aim of this study was to determine the effects of long-term management on soil P pools and to assess the response of P bioavailability, plant growth, and P uptake to mineral versus manure P treatments. Soils were collected from plots under organic (ORG), organic with composted manure (ORG + M), conventional (CONV), and restored prairie (PRA) management. Italian ryegrass (Lolium multiflorum L.) seedlings were grown in the greenhouse for 106 d in soils amended with various rates of manure or mineral P. The ORG soil had lower concentrations of labile P (resin-P and NaHCO3-P) compared with the CONV and PRA soils, as determined by sequential P fractionation prior to planting. Ryegrass biomass (root + shoot) and shoot P uptake from soils receiving no P were significantly lower for the ORG than all other management systems. Although apparent P use efficiency of the whole plant was increased by low P rate in the ORG management system, the source of applied P, manure > mineral, only influenced Olsen test P.


Author(s):  
L.M. Condron ◽  
K.M. Goh

Changes in soil phosphorus (P) associated with the establishment and maintenance of improved ryegrass-clover pasture under different superphosphate fertiliser treatments were examined over a 20-year period (1957-77). Results showed that soil organic P increased with increasing applications of P fertiliser. This represents a dynamic balance between rates of organic P addition and breakdown in the soil. This balance is reached slowly and may be significantly altered only by drastic changes in land use. In annually fertilised soils, amounts of inorganic P increased with time. However, the potential utilisation of this residual inorganic P is limited by its apparent stability in the soil. Keywords grazed pasture, irrigation, fertiliser P, soil inorganic P, soil organic P, soil P fractionation


1987 ◽  
Vol 67 (1) ◽  
pp. 147-163 ◽  
Author(s):  
J. W. B. STEWART ◽  
I. P. O'HALLORAN ◽  
R. G. KACHANOSKI

Changes in soil phosphorus (P) forms, as determined by a sequential fractionation procedure, were used to assess the influence of soil texture and management practices on the forms and distribution of soil P in a Brown Chernozemic loam soil at Swift Current, Saskatchewan. Significant proportions of the variability of all P fractions except residual-P could be attributed to changes in sand content. Changes in the forms and distribution of soil P with decreasing sand content followed patterns similar to those associated with a weathering sequence. The proportion of total soil P in inorganic and organic extractable forms that were extractable sequentially with anion exchange resin (resin-Pi), sodium bicarbonate (bicarb-Pi and -Po), and sodium hydroxide (NaOH-Pi and -Po) increased with decreasing sand content. Acid-extractable inorganic P (HCl-Pi) was the only P fraction positively correlated with sand content. The presence of a crop increased the proportion of soil P present as the more labile organic-P fractions (bicarb-Po and NaOH-Po) but not as total soil organic P (soil-Po). The presence of a crop also increased the proportion of soil P present as the labile inorganic fractions (resin-Pi and bicarb-Pi), possibly due to a decrease in soil pH. Application of inorganic-P fertilizer caused significant increases in the proportion of soil P as these labile inorganic-P fractions (resin-Pi and bicarb-Pi) and as total soil organic-P (soil-Po), but did not affect the more labile organic-P fractions. Key words: P fractionation, labile P, organic P, inorganic P, texture, management practices


2021 ◽  
Vol 3 ◽  
pp. e3
Author(s):  
Xin Jin ◽  
Changlu Hu ◽  
Asif Khan ◽  
Shulan Zhang ◽  
Xueyun Yang ◽  
...  

Background Diverse phosphorus (P) fractionation procedures presented varying soil P fractions, which directly affected P contents and forms, and their biological availability. Purpose To facilitate the selection of phosphorus (P) fractionation techniques, we compared two procedures based on a long-term experiment on a calcareous soil. Methods The soils containing a gradient P levels were sampled from seven treatments predictor under various long-term fertilizations. The P fractions were then separated independently with both fractionation procedures modified by Tiessen-Moir and Jiang-Gu. Results The results showed that the labile P in Jiang-Gu is significantly lower than that in Tiessen-Moir. The iron and aluminium-bounded P were greater in Jiang-Gu by a maximum of 46 mg kg−1 than Tiessen-Moir. Jiang-Gu fractionation gave similar Ca bounded P to that Tiessen-Moir did at low P level but greater contents at high P level. The two methods extracted much comparable total inorganic P. However, Tiessen-Moir method accounted less total organic P than ignition or Jiang-Gu method (the organic P (Po) estimated by subtract the total inorganic P (Pi) in Jiang-Gu fractionation from the total). P uptake by winter wheat was significantly and positively correlated with all phosphorus fractions in Jiang-Gu; Resin-P, NaHCO3-Pi, D. HCl-P, C. HCl-Pi, NaOH-Po, total-Po in Tiessen-Moir; P fraction categories of Ca-P, Fe & Al-P and total-Pi in both fractionations. Path coefficients indicated that Ca2-P in Jiang-Gu, NaHCO3-Pi and D. HCl-P in Tiessen-Moir had the higher and more significant direct contributions to P uptake among P fractions measured. Conclusions Our results suggested that Jiang-Gu procedure is a better predictor in soil P fractionation in calcareous soils, although it gives no results on organic P fractions.


2019 ◽  
Vol 103 (1) ◽  
pp. 43-45 ◽  
Author(s):  
Carlos Crusciol ◽  
João Rigon ◽  
Juliano Calonego ◽  
Rogério Soratto

Some crop species could be used inside a cropping system as part of a strategy to increase soil P availability due to their capacity to recycle P and shift the equilibrium between soil P fractions to benefit the main crop. The release of P by crop residue decomposition, and mobilization and uptake of otherwise recalcitrant P are important mechanisms capable of increasing P availability and crop yields.


<em>Abstract.</em>—Recent studies have shown that anadromous fish deliver ecologically significant quantities of marine-derived nitrogen (N), phosphorus (P), and organic carbon (C) to lakes, rivers, and streams of the Pacific Northwest. These marine-derived nutrients (MDN) can influence the ecological functioning of receiving streams through nutrient release and food availability. In Idaho, populations of anadromous salmon have declined dramatically with many formerly salmon-bearing streams now receiving no MDN supplementation. In order to assess how the loss of MDN may influence Idaho streams and rivers, we examined the current nutrient status of streams and rivers in Idaho with particular emphasis on the limiting role of N and P. We also generated a range of estimates of the historic and current affects of MDN on selected basins of the Salmon River, Idaho. Our analysis indicates that 25–50% of Idaho’s streams are potentially nutrient limited. Further analysis suggests that N and P limitation occurred in an approximately equal number of streams. Historic contributions of MDN to the Salmon River had varying potential to influence N and P availability, ranging from undetectable to resulting in a doubling of N availability. The level of influence depended upon location within the basin and the choices made regarding some simplifying assumptions. Finally, we discuss the effectiveness of artificial fertilization as a means of compensating for lost MDN and suggest that a spiraling approach be used to design and monitor fertilization treatments.


Geoderma ◽  
2019 ◽  
Vol 350 ◽  
pp. 73-83 ◽  
Author(s):  
Daniel G. DeBruler ◽  
Stephen H. Schoenholtz ◽  
Robert A. Slesak ◽  
Brian D. Strahm ◽  
Timothy B. Harrington

Soil Research ◽  
2020 ◽  
Vol 58 (3) ◽  
pp. 289
Author(s):  
L. B. Braos ◽  
A. C. T. Bettiol ◽  
L. G. Di Santo ◽  
M. E. Ferreira ◽  
M. C. P. Cruz

The evaluation of phosphorus (P) transformations in soil after application of manure or mineral P can improve soil management and optimise P use by plants. The objectives of the present study were to assess organic and inorganic P forms in two soils treated with dairy manure and triple superphosphate and to establish relationships between soil P fraction levels and P availability. Soil organic and inorganic P fractions were quantified using a pot experiment with two soils, a typical Hapludox and an arenic Hapludult, with three types of fertiliser treatments applied (no fertiliser application, application of dairy manure, and application of triple superphosphate, by adding 100 mg P dm–3 in the form of fertiliser in the two latter treatments) and four incubation times (15, 45, 90, and 180 days). Inorganic P was fractionated into aluminium-bound, iron-bound, occluded, and calcium-bound P. Organic P was extracted sequentially using sodium bicarbonate, hydrochloric acid, microbial biomass, sodium hydroxide, and residual organic P. After incubation, maize plants were cropped to quantify dry matter yield and absorbed P. Application of dairy manure resulted in a significant increase in most of the organic P fractions, and application of triple superphosphate led to a significant increase in inorganic P fractions. Both fertilisers raised labile organic P fractions in the two soils. The major sinks of P in Hapludox were occluded and fulvic acid-associated P. In contrast, the major sink of P in Hapludult was iron-bound P. The available P levels were stable after application of dairy manure, and decreased with time when fertilised with triple superphosphate. In the Hapludox, the organic P fractions had a significant positive correlation with P uptake by plants. The results suggest that organic P mineralisation plays a more significant role in plant P uptake in the Hapludox soil and inorganic P forms are the main contributors to plant P uptake in the Hapludult soil.


Soil Research ◽  
2007 ◽  
Vol 45 (1) ◽  
pp. 55 ◽  
Author(s):  
P. W. Moody

Soil phosphorus (P) buffer capacity is the change in the quantity of sorbed P required per unit change in solution P concentration. Because P availability to crops is mainly determined by solution P concentration, as P buffer capacity increases, so does the quantity of P required to maintain a solution P concentration that is adequate for crop demand. Bicarbonate-extractable P using the Colwell method is the most common soil P test used in Australia, and Colwell-P can be considered to estimate P quantity. Therefore, as P buffer capacity increases, the Colwell-P concentration required for maximum yield also increases. Data from several published and unpublished studies are used to derive relationships between the ‘critical’ Colwell-P value (Colwell-P at 90% maximum yield) and the single-point P buffer index (PBI) for annual medics, soybean, potato, wheat, and temperate pasture. The rate of increase in critical Colwell-P with increasing PBI increases in the order: temperate pasture < medics < wheat < potato. Indicative critical Colwell-P values are given for the 5 crops at each of the PBI categories used to describe soil P buffer capacity as it increases from extremely low to very high.


Sign in / Sign up

Export Citation Format

Share Document