soil p test
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 1)

H-INDEX

6
(FIVE YEARS 0)

2014 ◽  
Vol 20 (3) ◽  
pp. 151
Author(s):  
A. ARIVIN RIVAIE

ABSTRAK<br />Percobaan untuk mengetahui kesesuaian beberapa metoda uji P<br />tanah untuk tanaman jarak pagar (Jatropha curcas L.) dan pengaruh<br />berbagai dosis pupuk P terhadap kadar P daun dan berat kering tanaman<br />terhadap jarak pagar telah dilakukan pada tanah Ultisol Citayam, Bogor.<br />Percobaan dilakukan di Rumah Kaca Balai Penelitian Tanaman Rempah<br />dan Aneka Tanaman Industri Pakuwon, Jawa Barat, dari bulan September<br />2006 sampai Juni 2007. Perlakuan terdiri atas dosis P (SP-36), yaitu 0, 50,<br />100, dan 150 mg P O<br />2 5 /kg tanah, yang disusun dalam Rancangan Acak<br />Lengkap (RAL) dengan empat ulangan. Hasil penelitian menunjukkan<br />bahwa kadar P daun dan berat kering tanaman jarak pagar meningkat<br />sejalan dengan dosis pupuk P yang diberikan. Peningkatan dosis pupuk P<br />juga diikuti oleh peningkatan kadar P tanah yang diekstraksi dengan<br />metoda Olsen-P, Bray-1 P, dan HCl 25%. Nilai-nilai kadar P tanah tersedia<br />yang diukur dengan ketiga metoda uji P tanah tersebut mempunyai hubungan yang nyata dengan kadar P tanah yang diekstraksi dengan determinasi (R 2 ) tertinggi ditunjukkan oleh persamaan regresi dari nilai-<br />nilai P tanah dengan metoda Bray-1 P (R 2 = 0.92) dibandingkan dengan<br />metoda Olsen-P dan HCl 25%, yang menunjukkan bahwa metoda uji<br />tanah Bray-1 P lebih sesuai untuk penyusunan rekomendasi pemupukan P<br />untuk tanaman jarak pagar di tanah Ultisol.<br />Kata kunci: Jatropha curcas L., P daun, metode uji P tanah, hubungan<br />antara P daun dan P tanah<br />ABSTRACT<br />A study was conducted to compare the suitability of several soil P<br />test methods for physic nut (Jatropha curcas L.) and to determine the<br />effect of various doses of P fertilizer on the leaf P content and the plant dry<br />matter on Ultisol Citayam, Bogor. The experiments were carried out in a<br />glasshouse from September 2006 up to July 2007. The employed<br />treatments, namely 0, 50, 100, and 150 mg P O<br />2 5 /kg soil (in form of SP-36),<br />were arranged in a Completely Randomized Design (CRD) with four<br />replications. The results showed that the leaf P content and plant dry<br />matter of physic nut on Ultisol increased in line with increasing doses of P<br />fertilizer applied. Increase of P fertilizer P rates was also followed by the<br />increase of soil P concentrations extracted by the three soil P test methods<br />(Olsen-P, Bray-1 P, and HCl 25%). The values of available soil P concentration measured by the three soil P test methods had significant relationship with leaf P contents. The highest coefficient of determination (R 2 ) showed by the regression equation of available soil P concentration<br />measured by the Bray-1 P (R 2 = 0,92) compared to those measured by the<br />Olsen-P and HCl 25% methods, indicated that the Bray-1 P method is<br />likely  more  suitable  to  be  used  in  establishing  P  fertilizer<br />recommendations for the physic nut in Ultisol.<br />Key words: Jatropha curcas L., leaf P, soil P test methods, relationship<br />between soil P and leaf P contents


2013 ◽  
Vol 22 (2) ◽  
pp. 139
Author(s):  
L Izhar ◽  
A D Susila ◽  
B S Puswoko ◽  
A Sutandi ◽  
I W Mangku

ABSTRAK.  Fosfor merupakan salah satu hara penting tanah dan aplikasi hara tersebut pada konsentrasi yang sesuai sangat berpengaruh terhadap pertumbuhan tomat. Penelitian tentang studi analisis fosfor tanah dan aplikasi pupuk fosfor pada budidaya tomat pada tanah Inceptisols dilakukan di Kebun Percobaan dan Rumah Kaca di Cikabayan, Institut Pertanian Bogor, dari bulan Maret sampai dengan November 2010. Tujuan penelitian ialah untuk mendapatkan  metode  ekstraksi  fosfor tanah yang terbaik guna menentukan dosis pupuk fosfor pada budidaya tomat  pada tanah Inceptisols. Penelitian menggunakan rancangan acak kelompok dengan perlakuan pemberian pupuk fosfor pada beberapa tingkat dosis yaitu  0X, ¼ X, ½ X, ¾ X, dan 1X, di mana nilai X ialah 368,5 kg/ha P2O5 dengan empat ulangan. Perlakuan pemupukan fosfor diterapkan pada 6 bulan sebelum penanaman tomat. Analisis korelasi dilakukan antara kandungan P tanah dan pertumbuhan tanaman yang ditanam di dalam rumah kaca menggunakan media inkubasi berasal dari tanah yang diberi perlakuan dan dianalisis. Uji  fosfor  tanah menggunakan lima metode ekstraksi, yaitu metode Bray I (NH4F 0,03 N + HCl 0,025 N, nisbah 1:7); Bray II (NH4F 0,03 N + HCl 0,10 N ); Mehlich I (HCl 0,05 N + H2SO4 0,025 N); Morgan Wolf (NaC2H2H3O2.3H2O; pH 4,8); dan Truogh [HCl 0,10 N + (NH4)2SO4; pH 3]. Hasil penelitian menunjukkan adanya perbedaan yang nyata antara pengaruh perlakuan pupuk P terhadap parameter  tinggi tanaman,  jumlah daun, dan diameter batang tomat. Bobot segar biomassa dan bobot kering tomat juga menunjukkan  perbedaan pengaruh yang signifikan antarperlakuan. Nilai korelasi terbaik ditunjukkan oleh metode pengekstrak Mehlich I melalui parameter bobot kering dan bobot basah relatif tanaman. Dengan demikian, metode uji P tanah yang menggunakan Mehlich I dapat digunakan sebagai metode ekstraksi yang paling tepat untuk menganalisis unsur hara fosfor dengan koefisien korelasi 0,88, sehingga metode Mehlich I dapat diusulkan sebagai rekomendasi pemupukan P pada budidaya tomat pada tanah Inceptisols (nilai r = 0,89).  <br /><br />ABSTRACT. Izhar, L, Susila, AD, Purwoko, BS, Sutandi, A,  and  Mangku, IW. 2012. Determination of the Best Method of Soil P Test for Tomato (Lycopersicon esculentum Mill. L) on Inceptisols Soil. Phosphorus is one of important soil elements and application of the element in suitable concentration give high effect on tomato growth. A study on phosphorus analysis and its application for recommendation of soil fertilization of tomato cultivation on Inceptisols soil was conducted at the field and Greenhouse of Cikabayan, Bogor Agricultural University, from March to November 2010. The objective of this research was to obtain the best extraction method of soil-P test for determining phosphorus nutrient required for tomato cultivation on Inceptisol soil. Rate of phosphorus of 0X, ¼ X, ½ X, ¾ X, and 1X, where X was 368.5 kg/ha P2O5 with four replications, was applied in the study. The treatments were applied 6 months before planting date. The research was arranged in randomized complete block design. Analysis of correlation between soil-P and plant growth based on data collected from the plants grown in the greenhouse using incubation media in treated-soil was  analyzed. Soil-P test was carried out by using five extraction methods i.e. Bray I (HCl 0,025 N + NH4F 0.03), Bray II (NH4F 0.03 N + HCl 0.10 N), Mehlich I (HCl 0.05 N + H2SO4 0.025 N), Morgan Wolf (NaC2H2H3O2.3H2O; pH 4.8), and Truogh [HCl 0.10 N + (NH4)2SO4; pH 3]. The results showed that there were significant differences among the treatments of P fertilizer on the variables of plant height, leaf number, and stem diameter of tomato. Biomass fresh and dry weight of tomato also showed significantly different between the treatments applied. The highest correlation was shown on Mehlich I extraction reagent between plant dry and fresh weight. It means that, this P-nutrient extraction method was the most appropriate in determining phosphorus nutrient for tomatoes on Inceptisols soil with a coefficient correlation of 0.88. Mehlich I can also be used to develop a comprehensive phosphorus fertilizer recommendation for tomato cultivation on Inceptisols soil (r value = 0.89).<br /><br />


2013 ◽  
Vol 64 (5) ◽  
pp. 469 ◽  
Author(s):  
Simon D. Speirs ◽  
Brendan J. Scott ◽  
Philip W. Moody ◽  
Sean D. Mason

The performance of a wide range of soil phosphorus (P) testing methods that included established (Colwell-P, Olsen-P, BSES-P, and CaCl2-P) and more recently introduced methods (DGT-P and Mehlich 3-P) was evaluated on 164 archived soil samples corresponding to P fertiliser response experiments with wheat (Triticum aestivum) conducted in south-eastern Australia between 1968 and 2008. Soil test calibration relationships were developed for relative grain yield v. soil test using (i) all soils, (ii) Calcarosols, and (iii) all ‘soils other than Calcarosols’. Colwell-P and DGT-P calibration relationships were also derived for Calcarosols and Vertosols containing measureable CaCO3. The effect of soil P buffer capacity (measured as the single-point P buffer index corrected for Colwell-P, PBICol) on critical Colwell-P values was assessed by segregating field sites based on their PBICol class: very very low (15–35), very low (36–70), low (71–140), and moderate (141–280). All soil P tests, except Mehlich 3-P, showed moderate correlations with relative grain yield (R-value ≥0.43, P < 0.001) and DGT-P exhibited the largest R-value (0.55). Where soil test calibrations were derived for Calcarosols, Colwell-P had the smallest R-value (0.36), whereas DGT-P had an R-value of 0.66. For ‘soils other than Calcarosols’, R-values >0.45 decreased in the order: DGT-P (r = 0.55), Colwell-P (r = 0.49), CaCl2-P (r = 0.48), and BSES-P (r = 0.46). These results support the potential of DGT-P as a predictive soil P test, but indicate that Mehlich 3-P has little predictive use in these soils. Colwell-P had tighter critical confidence intervals than any other soil test for all calibrations except for soils classified as Calcarosols. Critical Colwell-P values, and confidence intervals, for the very very low, very low, and low P buffer capacity categories were within the range of other published data that indicate critical Colwell-P value increases as PBICol increases. Colwell-P is the current benchmark soil P test used in Australia and for the field trials in this study. With the exception of Calcarosols, no alternative soil P testing method was shown to provide a statistically superior prediction of response by wheat. Although having slightly lower R-values (i.e. <0.1 difference) for some calibration relationships, Colwell-P yielded tighter confidence intervals than did any of the other soil tests. The apparent advantage of DGT-P over Colwell-P on soils classified as Calcarosols was not due to the effects of calcium carbonate content of the analysed surface soils.


2012 ◽  
Vol 92 (3) ◽  
pp. 537-542 ◽  
Author(s):  
Chunyu Song ◽  
Xingyi Zhang ◽  
Xiaobing Liu ◽  
Yuan Chen

Song, C., Zhang, X., Liu, X. and Chen, Y. 2012. Effect of soil temperature and moisture on soil test P with different extractants. Can. J. Soil Sci. 92: 537–542. Temperature and moisture are important factors affecting adsorption, transformation and the availability of soil phosphorus (P) to plants. The different temperatures and moisture contents at which soil is sampled might affect the results of soil test P (STP). In order to evaluate the effect of the temperature and moisture, as well as the fertilization level, on the results of soil test P, an incubation study involving three soil temperatures (5, 10, and 20°C), and three soil moisture contents (50, 70, 90% of field water-holding capacity) was conducted with Chinese Mollisols collected from four fertilization treatments in a long-term experiment in northeast China. Four soil P test methods, Mehlich 3, Morgan, Olsen and Bray 1 were used to determine STP after a 42-d incubation. The effect of temperature and moisture on STP varied among soil P tests. Averaged across the four fertilization treatments, the temperature had significant impact on STP, while the responses varied among soil P test methods. Mehlich 3, Morgan and Bray 1 STP decreased and Olsen STP increased with increase in temperature. Effect of soil moisture was only significant for Mehlich 3 P and Olsen P. Soil temperature had greater impact on STP than soil moisture content. The responses of the Olsen method to temperature differed from the other three methods tested. The interaction between soil temperature and soil moisture on soil test P was only significant for Mehlich 3 P. Fertilization level does not affect the STP in as a clear pattern as the temperature and moisture varied for all four methods. Consistent soil sampling conditions, especially the soil temperature, appear to be the first step to achieve a reliable STP for any soil P test.


2009 ◽  
Vol 40 (13-14) ◽  
pp. 2234-2247 ◽  
Author(s):  
Min Liu ◽  
J. B. Sartain ◽  
L. E. Trenholm ◽  
W. G. Harris
Keyword(s):  
Soil P ◽  

2009 ◽  
Vol 40 (1-6) ◽  
pp. 526-537 ◽  
Author(s):  
Katalin Sárdi ◽  
Erzsébet Osztoics ◽  
Péter Csathó ◽  
Ágnes Balázsy

Soil Research ◽  
2007 ◽  
Vol 45 (1) ◽  
pp. 55 ◽  
Author(s):  
P. W. Moody

Soil phosphorus (P) buffer capacity is the change in the quantity of sorbed P required per unit change in solution P concentration. Because P availability to crops is mainly determined by solution P concentration, as P buffer capacity increases, so does the quantity of P required to maintain a solution P concentration that is adequate for crop demand. Bicarbonate-extractable P using the Colwell method is the most common soil P test used in Australia, and Colwell-P can be considered to estimate P quantity. Therefore, as P buffer capacity increases, the Colwell-P concentration required for maximum yield also increases. Data from several published and unpublished studies are used to derive relationships between the ‘critical’ Colwell-P value (Colwell-P at 90% maximum yield) and the single-point P buffer index (PBI) for annual medics, soybean, potato, wheat, and temperate pasture. The rate of increase in critical Colwell-P with increasing PBI increases in the order: temperate pasture < medics < wheat < potato. Indicative critical Colwell-P values are given for the 5 crops at each of the PBI categories used to describe soil P buffer capacity as it increases from extremely low to very high.


Sign in / Sign up

Export Citation Format

Share Document