Reply-The effects of direct-beam light on overcast-day estimates of light availability: On the accuracy of the instantaneous one-point overcast-sky conditions method to estimate mean daily %PPFD under heterogeneous overstory canopy conditions

1997 ◽  
Vol 27 (2) ◽  
pp. 274-275 ◽  
Author(s):  
C Messier ◽  
S Parent
1996 ◽  
Vol 26 (1) ◽  
pp. 151-154 ◽  
Author(s):  
Sylvain Parent ◽  
Christian Messier

This study presents a new, simple, and efficient method for estimating microsite light availability in the understory of a forest. The percentage of above-canopy photosynthetic photon flux density (%PPFD) transmitted above 16 microsites in the understory of a mixed conifer–broadleaf forest was measured every minute between 07:00 and 19:00 for both a completely overcast and a cloudless day. Instantaneous measures of %PPFD were also taken at different times on 3 overcast days. The instantaneous measures of %PPFD were strongly and directly related (P < 0.001) among themselves and with mean daily %PPFD values. These results demonstrate the usefulness of using an instantaneous measure of %PPFD taken under overcast sky conditions for estimating the mean daily %PPFD at any microsite under a forest canopy.


2012 ◽  
Vol 49 ◽  
pp. 394-401 ◽  
Author(s):  
Ignacio Acosta ◽  
Jaime Navarro ◽  
Juan José Sendra ◽  
Paula Esquivias
Keyword(s):  

Solar Energy ◽  
2013 ◽  
Vol 89 ◽  
pp. 89-99 ◽  
Author(s):  
Ignacio Acosta ◽  
Jaime Navarro ◽  
Juan José Sendra

2014 ◽  
Vol 1041 ◽  
pp. 390-394
Author(s):  
Stanislav Darula ◽  
Jitka Mohelníková

Daylighting levels in interiors are changed every day since sunrise to sunset in dependence on luminous exterior conditions. Indoors are illuminated by diffuse skylight prevailing time of the year in Central European counties while a lot of sunny situations occur mainly during transitional and summer periods. The later can produce overheating as well as glare or disturbing luminance due to excessive sunlight in the space close to windows. If interiors are designed with screened work places the influence of direct sunlight during working time has to be evaluated.The article will present results of computer daylight simulations in a side-lit office room oriented to cardinal points. The study is focused on daylighting evaluation of the room orientation influence on levels under clear sky conditions and compared with results achieved for the CIE overcast sky model. The calculations were run in software Daylight Visualizer 2.6.7. The daylight simulation show that applying the clear sky model for illumination of oriented rooms, the substantial different illuminances can be resulted compared to outputs from the common overcast sky daylight metrics.


1980 ◽  
Vol 102 (3) ◽  
pp. 196-202 ◽  
Author(s):  
F. C. Hooper ◽  
A. P. Brunger

A flexible mathematical model is introduced which describes the radiance of the dome of the sky under various conditions. This three-component continuous distribution (TCCD) model is compounded by the superposition of three separate terms, isotropic, circumsolar and horizon-brightening factors, each representing the contribution of a distinguishable sky characteristic. In use, a particular sky condition is characterized by the values of the coefficients of each of these three terms, defining the distribution of the total diffuse component. The TCCD model has been demonstrated to fit both the normalized clear sky data and the normalized overcast sky data with an RMS error of about ten percent of the mean overall sky radiance. By extension the model could describe variable or partly clouded sky conditions. The model will permit improvement in the prediction of the total solar radiation incident upon a surface of given tilt and orientation, such as that of a solar collector.


2015 ◽  
Vol 77 ◽  
pp. 194-207 ◽  
Author(s):  
Ignacio Acosta ◽  
Carmen Munoz ◽  
Miguel Angel Campano ◽  
Jaime Navarro

2013 ◽  
Vol 64 ◽  
pp. 10-16 ◽  
Author(s):  
Ignacio Acosta ◽  
Jaime Navarro ◽  
Juan José Sendra
Keyword(s):  

2006 ◽  
Vol 23 (3) ◽  
pp. 437-447 ◽  
Author(s):  
M. P. Souza-Echer ◽  
E. B. Pereira ◽  
L. S. Bins ◽  
M. A. R. Andrade

Abstract This work describes the development of a simple method of field estimating the sky cloud coverage percentage for several applications at the Brazilian Antarctic Station, Ferraz (62°05′S, 58°23.5′W). The database of this method was acquired by a digital color camera in the visible range of the spectrum. A new algorithm was developed to classify each pixel according to a criteria decision process. The information on the pixel contamination by clouds was obtained from the saturation component of the intensity, hue, and saturation space (IHS). For simplicity, the images were acquired with a limited field of view of 36° pointing to the camera’s zenith to prevent direct sunlight from reaching the internal charge-coupled device (CCD) on the camera. For a priori–classified clear-sky images, the accuracy of the method was superior to 94%. For overcast-sky conditions, the corresponding accuracy was larger than 99%. A comparison test was performed with two human observers and our method. The results for the 29 images collected for several time of days during 50 days in 1999 summer were compared to visual observations of these same digital images by two trained field meteorologists. Correlation coefficients between human observers and the automatic method ranged from 0.84 for clear-sky conditions, and the lowest was 0.09 for undefined-sky conditions.


Sign in / Sign up

Export Citation Format

Share Document