A Model for the Angular Distribution of Sky Radiance

1980 ◽  
Vol 102 (3) ◽  
pp. 196-202 ◽  
Author(s):  
F. C. Hooper ◽  
A. P. Brunger

A flexible mathematical model is introduced which describes the radiance of the dome of the sky under various conditions. This three-component continuous distribution (TCCD) model is compounded by the superposition of three separate terms, isotropic, circumsolar and horizon-brightening factors, each representing the contribution of a distinguishable sky characteristic. In use, a particular sky condition is characterized by the values of the coefficients of each of these three terms, defining the distribution of the total diffuse component. The TCCD model has been demonstrated to fit both the normalized clear sky data and the normalized overcast sky data with an RMS error of about ten percent of the mean overall sky radiance. By extension the model could describe variable or partly clouded sky conditions. The model will permit improvement in the prediction of the total solar radiation incident upon a surface of given tilt and orientation, such as that of a solar collector.

2008 ◽  
Vol 8 (18) ◽  
pp. 5615-5626 ◽  
Author(s):  
P. Weihs ◽  
M. Blumthaler ◽  
H. E. Rieder ◽  
A. Kreuter ◽  
S. Simic ◽  
...  

Abstract. A measurement campaign was performed in the region of Vienna and its surroundings from May to July 2007. Within the scope of this campaign erythemal UV was measured at six ground stations within a radius of 30 km. First, the homogeneity of the UV levels within the area of one satellite pixel was studied. Second, the ground UV was compared to ground UV retrieved by the ozone monitoring instrument (OMI) onboard the NASA EOS Aura Spacecraft. During clear-sky conditions the mean bias between erythemal UV measured by the different stations was within the measurement uncertainty of ±5%. Short term fluctuations of UV between the stations were below 3% within a radius of 20 km. For partly cloudy conditions and overcast conditions the discrepancy of instantaneous values between the stations is up to 200% or even higher. If averages of the UV index over longer time periods are compared the difference between the stations decreases strongly. The agreement is better than 20% within a distance of 10 km between the stations for 3 h averages. The comparison with OMI UV showed for clear-sky conditions higher satellite retrieved UV values by, on the average, approximately 15%. The ratio of OMI to ground measured UV lies between 0.9 and 1.5. and strongly depends on the aerosol optical depth. For partly cloudy and overcast conditions the OMI derived surface UV estimates show larger deviation from the ground-based reference data, and even bigger systematic positive bias. Here the ratio OMI to ground data lies between 0.5 and 4.5. The average difference between OMI and ground measurements is +24 to +37% for partly cloudy conditions and more than +50% for overcast conditions.


2014 ◽  
Vol 1041 ◽  
pp. 390-394
Author(s):  
Stanislav Darula ◽  
Jitka Mohelníková

Daylighting levels in interiors are changed every day since sunrise to sunset in dependence on luminous exterior conditions. Indoors are illuminated by diffuse skylight prevailing time of the year in Central European counties while a lot of sunny situations occur mainly during transitional and summer periods. The later can produce overheating as well as glare or disturbing luminance due to excessive sunlight in the space close to windows. If interiors are designed with screened work places the influence of direct sunlight during working time has to be evaluated.The article will present results of computer daylight simulations in a side-lit office room oriented to cardinal points. The study is focused on daylighting evaluation of the room orientation influence on levels under clear sky conditions and compared with results achieved for the CIE overcast sky model. The calculations were run in software Daylight Visualizer 2.6.7. The daylight simulation show that applying the clear sky model for illumination of oriented rooms, the substantial different illuminances can be resulted compared to outputs from the common overcast sky daylight metrics.


2006 ◽  
Vol 23 (3) ◽  
pp. 437-447 ◽  
Author(s):  
M. P. Souza-Echer ◽  
E. B. Pereira ◽  
L. S. Bins ◽  
M. A. R. Andrade

Abstract This work describes the development of a simple method of field estimating the sky cloud coverage percentage for several applications at the Brazilian Antarctic Station, Ferraz (62°05′S, 58°23.5′W). The database of this method was acquired by a digital color camera in the visible range of the spectrum. A new algorithm was developed to classify each pixel according to a criteria decision process. The information on the pixel contamination by clouds was obtained from the saturation component of the intensity, hue, and saturation space (IHS). For simplicity, the images were acquired with a limited field of view of 36° pointing to the camera’s zenith to prevent direct sunlight from reaching the internal charge-coupled device (CCD) on the camera. For a priori–classified clear-sky images, the accuracy of the method was superior to 94%. For overcast-sky conditions, the corresponding accuracy was larger than 99%. A comparison test was performed with two human observers and our method. The results for the 29 images collected for several time of days during 50 days in 1999 summer were compared to visual observations of these same digital images by two trained field meteorologists. Correlation coefficients between human observers and the automatic method ranged from 0.84 for clear-sky conditions, and the lowest was 0.09 for undefined-sky conditions.


2014 ◽  
Vol 9 (1) ◽  
pp. 33-40 ◽  
Author(s):  
Kristián Kondáš ◽  
Stanislav Darula

AbstractThe evaluation of daylight conditions in building interiors is based on the Daylight Factor concept after current Slovak standards. Criteria and requirements determined in these standards consider the worst daylight exterior conditions which are described by CIE overcast sky model. The sky luminance distribution of overcast sky is centrical to the zenith, so independence of window orientation to cardinal points is characteristic in daylighting calculations. The sky luminance distribution modelling is one of the main task of the daylight source research more than 50 years. It is evident that also other types of sky conditions exist in nature. An introduction of a new criterion based on photometric variables, which also consider sunlight influence, is expected. This article represents a study of the influence of the interior orientation on distribution of daylighting in attic spaces under an overcast and clear sky


Vestnik MGSU ◽  
2019 ◽  
pp. 1096-1105
Author(s):  
Nguyen Thi Khanh Phuong

Introduction. Natural illumination calculations depend on the sky luminance distribution. The most often used diagram of sky luminance in handbooks and guidelines is the luminance distribution in the cloudy sky proposed by Moon and Spencer. This concept actually includes the tropical areas of Vietnam, where the overcast sky and clear sky does not typically occur. To improve the calculation of natural illumination, it is necessary to determine the luminance distribution in the real sky. Materials and methods. In solving the research problem, the real sky types for Hanoi were identified using the 15 international standard sky types with their descriptions by lighting climate, which is provided using the method by R. Kittler. The descriptions are derived from the data on diffuse horizontal illumination Dv, extraterrestrial horizontal illumination Ev and light turbidity coefficient Tv. For a specific sky type, the standard parameters were selected for calculating the luminance distribution of the real sky. Results. The obtained results show that the typical sky type of Hanoi is the partly cloudy sky, no gradation towards zenith, with slight bleaching towards the Sun (type VI). The sky types from October to December are partly cloudy with the obscured Sun (type IX) and partly cloudy with the more luminant circumsolar area (type X). The study shows that the state of cloud coverage has a great influence on the level of diffuse horizontal illumination and luminance distribution under tropical sky conditions. Conclusions. It is revealed that the typical sky type for Hanoi is neither overcast nor clear sky. A typical sky with statistic dominance of cirrus and stratus clouds under effect of high solar radiation of Vietnamese tropical climate gives a high level of diffuse horizontal illuminance. The results show that the difference in luminance distribution between the CIE standard overcast sky and Kittler’s intermediate sky can be resolved at the angles of sky point elevation above horizon γ is higher than 50° with the relative errors below 10 %. In other words, the luminance distribution β of the considered sky type is significant for a system of side natural illumination.


2021 ◽  
Author(s):  
Kevin Lamy ◽  
Thierry Portafaix ◽  
Colette Brogniez ◽  
Kaisa Lakkala ◽  
Mikko R. A. Pitkänen ◽  
...  

Abstract. As part of the UV-Indien Network, 9 ground-based stations have been equipped with one spectroradiometer, radiometers and all-sky cameras. These stations are homogeneously distributed in 5 countries of the Western Indian Ocean region (Comoros, France, Madagascar, Mauritius and Seychelles), a part of the world where almost no measurements have been made so far. The main scientific objectives of this network are to study the annual and inter-annual variability of the ultraviolet (UV) radiation in this area, to validate the output of numerical models and satellite estimates of ground-based UV measurements, and to monitor UV radiation in the context of climate change and projected ozone depletion in this region. The first results are presented here for the oldest stations (Antananarivo, Anse Quitor, Mahé and Saint-Denis). Ground-based measurements of UV index (UVI) are compared against satellite estimates (Ozone Monitoring Instrument (OMI), the TROPOspheric Monitoring Instrument (TROPOMI), the Global Ozone Monitoring Experiment (GOME) and model forecasts of UVI (Tropospheric Emission Monitoring Internet Service (TEMIS) and Copernicus Atmospheric Monitoring Service (CAMS). The median relative differences between satellite or model estimates and ground-based measurements of clear-sky UVI range between −34.5 % and 15.8 %. Under clear skies, the smallest UVI median difference between the satellites or model estimates and the measurements of ground-based instruments is found to be 0.02 (TROPOMI), 0.04 (OMI), −0.1 (CAMS) and −0.4 (CAMS) at St-Denis, Antananarivo, Anse Quitor and Mahé respectively. The cloud fraction and UVI diurnal profile are calculated for these four stations. The mean UVI values at local solar noon range between 10 (Antananarivo, Anse Quitor and Saint-Denis) and 14 at Mahé. The mean UVIs in clear-sky conditions are higher than mean UVI in all-sky conditions, although it can still be noted that UVI maxima are higher for all-sky conditions than for clear sky conditions. This is the result of UVI enhancement induced by clouds, observed at these four stations. The greatest increase in UV radiation under cloudy conditions was observed at the Mahé station, with increases of more than 4. The data used in this study is available at https://doi.org/10.5281/zenodo.4572026 (Lamy and Portafaix, 2021).


2017 ◽  
Vol 27 (9) ◽  
pp. 1187-1202 ◽  
Author(s):  
Claudia Moscoso ◽  
Barbara Matusiak

The quality of a lit environment cannot be deduced solely from the quantity of light. Therefore, daylighting studies should not only be focused on the usage of lighting metrics but should also consider the aesthetic experience. This paper examines the influence of daylighting systems on the aesthetic perception of a small office. One single side lit office was equipped with four different daylighting systems (white blinds, high-reflecting blinds, hybrid light shelf and mirror light shelf) under two sky conditions (clear sky and overcast sky). In total, eight stimuli were captured and presented via stereoscopic images. Fifty participants evaluated the images using the semantic differential scale to rate nine architectural quality attributes. The results from MANOVA indicated that both the daylighting systems and the type of sky had an effect on the aesthetic attributes, and that the significant interaction effect suggested that the aesthetic perception of a daylighting system depends on the type of sky. Subsequent statistical findings showed that the high-reflecting blinds comprised the daylighting system that scored highest in nearly all attributes under both clear and overcast sky conditions.


2019 ◽  
Vol 110 ◽  
pp. 01070
Author(s):  
Sergey Stetsky ◽  
Kira Larionova

The article observes the new approach to a lighting environment in premises of civil buildings in hot and sunny climatic conditions. Under such conditions, the use of sun-protective devices (SPD) of different types and geometrics becomes traditional way of passive climate control in interiors. However, the authors determined, that the most traditional types of external SPD (such as canopies or awnings) have a different effect on indoor lighting environment due to the conditions of external natural illumination under overcast sky vault or clear sky conditions. In the first case, the stationary SPD act as shadowing elements, which block the light flows from the CIE standard overcast sky. In the second case, which corresponds to a clear sky sunny conditions, such SPD block the solar radiation, decreasing overheating and reflect sun beams to an interior, increasing the value of daylight factor (DF) at least in the furthest from windows areas of a premise. The proposed solutions allow reducing electric power consumption in buildings.


Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 599 ◽  
Author(s):  
Jingnan Wang ◽  
Lifeng Zhang ◽  
Jiping Guan ◽  
Mingyang Zhang

The impacts of assimilating all-sky satellite radiance from the Advanced Microwave Scanning Radiometer 2 (AMSR2) on typhoon Chan-hom and Nangka are evaluated over traditional clear-sky radiance assimilation. Results show that more AMSR2 radiance data around typhoon core area are assimilated in all-sky experiment than clear-sky, which improves the utilization of satellite radiance data. Community Radiative Transfer Model (CRTM) brightness temperature simulation under all-sky conditions is in better agreement with observations than in the case of clear-sky conditions. In a cycle assimilation experiment, all-sky assimilation reduces typhoon track forecast errors by 14.84%, and intensity errors by approximately 16.89%. Wind, temperature and humidity analysis are clearly improved in all-sky assimilation, as evaluated using the European Center for Medium-Range Weather Forecasts (ECMWF) reanalysis data. All-sky assimilation better captures the structures of typhoons, with a stronger warm core and tighter circulation around the typhoon eye. This study explores the contributions to the improvements in all-sky assimilation. These improvements are attributed to the enhancements in initial geopotential height, temperature and moisture in the typhoon core areas. Moreover, assimilating cloud- and precipitation-affected radiance data improves hydrometer simulations, which leads to higher hydrometeor concentrations than clear-sky radiance and conventional data assimilation. The results demonstrate that assimilation of all-sky AMSR2 data improves the analysis and forecast of multiple typhoons.


2006 ◽  
Vol 6 (11) ◽  
pp. 3211-3229 ◽  
Author(s):  
D. Schaub ◽  
K. F. Boersma ◽  
J. W. Kaiser ◽  
A. K. Weiss ◽  
D. Folini ◽  
...  

Abstract. Nitrogen dioxide (NO2) vertical tropospheric column densities (VTCs) retrieved from the Global Ozone Monitoring Experiment (GOME) are compared to coincident ground-based tropospheric NO2 columns. The ground-based columns are deduced from in situ measurements at different altitudes in the Alps for 1997 to June 2003, yielding a unique long-term comparison of GOME NO2 VTC data retrieved by a collaboration of KNMI (Royal Netherlands Meteorological Institute) and BIRA/IASB (Belgian Institute for Space Aeronomy) with independently derived tropospheric NO2 profiles. A first comparison relates the GOME retrieved tropospheric columns to the tropospheric columns obtained by integrating the ground-based NO2 measurements. For a second comparison, the tropospheric profiles constructed from the ground-based measurements are first multiplied with the averaging kernel (AK) of the GOME retrieval. The second approach makes the comparison independent from the a priori NO2 profile used in the GOME retrieval. This allows splitting the total difference between the column data sets into two contributions: one that is due to differences between the a priori and the ground-based NO2 profile shapes, and another that can be attributed to uncertainties in both the remaining retrieval parameters (such as, e.g., surface albedo or aerosol concentration) and the ground-based in situ NO2 profiles. For anticyclonic clear sky conditions the comparison indicates a good agreement between the columns (n=157, R=0.70/0.74 for the first/second comparison approach, respectively). The mean relative difference (with respect to the ground-based columns) is −7% with a standard deviation of 40% and GOME on average slightly underestimating the ground-based columns. Both data sets show a similar seasonal behaviour with a distinct maximum of spring NO2 VTCs. Further analysis indicates small GOME columns being systematically smaller than the ground-based ones. The influence of different shapes in the a priori and the ground-based NO2 profile is analysed by considering AK information. It is moderate and indicates similar shapes of the profiles for clear sky conditions. Only for large GOME columns, differences between the profile shapes explain the larger part of the relative difference. In contrast, the other error sources give rise to the larger relative differences found towards smaller columns. Further, for the clear sky cases, errors from different sources are found to compensate each other partially. The comparison for cloudy cases indicates a poorer agreement between the columns (n=60, R=0.61). The mean relative difference between the columns is 60% with a standard deviation of 118% and GOME on average overestimating the ground-based columns. The clear improvement after inclusion of AK information (n=60, R=0.87) suggests larger errors in the a priori NO2 profiles under cloudy conditions and demonstrates the importance of using accurate profile information for (partially) clouded scenes.


Sign in / Sign up

Export Citation Format

Share Document