Estimation of basic density of Eucalyptus globulus using near-infrared spectroscopy

1999 ◽  
Vol 29 (2) ◽  
pp. 194-201 ◽  
Author(s):  
Laurence R Schimleck ◽  
Anthony J Michell ◽  
Carolyn A Raymond ◽  
Allie Muneri

Basic density and pulp yield are two very important factors in determining the economics of chemical pulping. A method for estimating pulp yields has been developed by measuring the near-infrared spectra of wood powders from cores withdrawn from standing eucalypt plantation trees using motorized equipment. This paper examines the precision with which the basic density of the woods might be predicted from the same near-infrared spectra. We found that the basic densities of woods from plantation-grown 8-year-old Eucalyptus globulus Labill. subsp. globulus (Tasmanian blue gum) ranging from 378 to 656 kg/m3 could be determined with an accuracy of prediction of ca. ±30 kg/m3. This error compares with the accuracy of prediction of pilodyn density measurements on similar samples of ca. ±22 kg/m3. The basic densities of increment cores having relatively low basic densities were consistently overestimated and those having relatively high basic densities were consistently underestimated by the near-infrared spectroscopic method.

2010 ◽  
Vol 40 (5) ◽  
pp. 917-927 ◽  
Author(s):  
Desmond J. Stackpole ◽  
René E. Vaillancourt ◽  
Geoffrey M. Downes ◽  
Christopher E. Harwood ◽  
Brad M. Potts

Pulp yield is an important breeding objective for Eucalyptus globulus Labill., but evaluation of its genetic control and genetic correlations with other traits has been limited by its high assessment cost. We used near infrared spectroscopy to study genetic variation in pulp yield and other traits in a 16-year-old E. globulus trial. Pulp yield was predicted for 2165 trees from 467 open-pollinated families from 17 geographic subraces. Significant differences between subraces and between families within subraces were detected for all traits. The high pulp yield of southern Tasmanian subraces suggested that their economic worth was previously underestimated. The narrow-sense heritability of pulp yield was medium (0.40). The significant positive genetic correlation between pulp yield and diameter (0.52) was at odds with the generally neutral values reported. The average of the reported genetic correlations between pulp yield and basic density (0.50) was also at odds with our nonsignificant estimate. Pulp yield of the subraces increased with increasing latitude, producing a negative correlation with density (–0.58). The absence of genetic correlations within subraces between pulp yield and density suggests that the correlation may be an independent response of the two traits to the same or different selection gradients that vary with latitude.


2002 ◽  
Vol 32 (1) ◽  
pp. 170-176 ◽  
Author(s):  
C A Raymond ◽  
L R Schimleck

Determining kraft pulp yield in the traditional way is slow and expensive, limiting the numbers of samples that may be processed. An alternative is to use a secondary standard, such as cellulose content of the wood, which is strongly correlated with kraft pulp yield. The feasibility and efficiency of predicting cellulose content using near infrared reflectance (NIR) analysis was examined for Eucalyptus globulus Labill. Calibrations for NIR prediction of cellulose content indicated that NIR analysis could be used as a reliable predictor. Standard errors of calibration were 1% or lower, and there was excellent agreement between laboratory and predicted cellulose values. Cellulose content was under moderate genetic control (h2 ranging from 0.32 to 0.57), and genetic correlations with tree diameter and basic density were variable (ranging from –0.11 to –0.51 and –0.33 to 0.67, respectively). The advantages, disadvantages, and potential applications of NIR analysis for predicting cellulose content are examined.


2009 ◽  
Vol 17 (3) ◽  
pp. 141-150 ◽  
Author(s):  
Paulo Ricardo Gherardi Hein ◽  
José Tarcísio Lima ◽  
Gilles Chaix

2020 ◽  
Vol 16 ◽  
Author(s):  
Linqi Liu ◽  
JInhua Luo ◽  
Chenxi Zhao ◽  
Bingxue Zhang ◽  
Wei Fan ◽  
...  

BACKGROUND: Measuring medicinal compounds to evaluate their quality and efficacy has been recognized as a useful approach in treatment. Rhubarb anthraquinones compounds (mainly including aloe-emodin, rhein, emodin, chrysophanol and physcion) are its main effective components as purgating drug. In the current Chinese Pharmacopoeia, the total anthraquinones content is designated as its quantitative quality and control index while the content of each compound has not been specified. METHODS: On the basis of forty rhubarb samples, the correlation models between the near infrared spectra and UPLC analysis data were constructed using support vector machine (SVM) and partial least square (PLS) methods according to Kennard and Stone algorithm for dividing the calibration/prediction datasets. Good models mean they have high correlation coefficients (R2) and low root mean squared error of prediction (RMSEP) values. RESULTS: The models constructed by SVM have much better performance than those by PLS methods. The SVM models have high R2 of 0.8951, 0.9738, 0.9849, 0.9779, 0.9411 and 0.9862 that correspond to aloe-emodin, rhein, emodin, chrysophanol, physcion and total anthraquinones contents, respectively. The corresponding RMSEPs are 0.3592, 0.4182, 0.4508, 0.7121, 0.8365 and 1.7910, respectively. 75% of the predicted results have relative differences being lower than 10%. As for rhein and total anthraquinones, all of the predicted results have relative differences being lower than 10%. CONCLUSION: The nonlinear models constructed by SVM showed good performances with predicted values close to the experimental values. This can perform the rapid determination of the main medicinal ingredients in rhubarb medicinal materials.


2007 ◽  
Vol 584 (2) ◽  
pp. 379-384 ◽  
Author(s):  
Lijuan Xie ◽  
Yibin Ying ◽  
Tiejin Ying ◽  
Haiyan Yu ◽  
Xiaping Fu

1993 ◽  
Vol 1 (2) ◽  
pp. 99-108 ◽  
Author(s):  
P. Robert ◽  
M.F. Devaux ◽  
A. Qannari ◽  
M. Safar

Multivariate data treatments were applied to mid and near infrared spectra of glucose, fructose and sucrose solutions in order to specify near infrared frequencies that characterise each carbohydrate. As a first step, the mid and near infrared regions were separately studied by performing Principal Component Analyses. While glucose, fructose and sucrose could be clearly identified on the similarity maps derived from the mid infrared spectra, only the total sugar content of the solutions was observed when using the near infrared region. Characteristic wavelengths of the total sugar content were found at 2118, 2270 and 2324 nm. In a second step, the mid and near infrared regions were jointly studied by a Canonical Correlation Analysis. As the assignments of frequencies are generally well known in the mid infrared region, it should be useful to study the relationships between the two infrared regions. Thus, the canonical patterns obtained from the near infrared spectra revealed wavelengths that characterised each carbohydrate. The OH and CH combination bands were observed at: 2088 and 2332 nm for glucose, 2134 and 2252 nm for fructose, 2058 and 2278 nm for sucrose. Although a precise assignment of the near infrared bands to chemical groups within the molecules was not possible, the present work showed that near infrared spectra of carbohydrates presented specific features.


Sign in / Sign up

Export Citation Format

Share Document