Initial rates and limit values for decomposition of Scots pine and Norway spruce needle litter: a synthesis for N-fertilized forest stands

2000 ◽  
Vol 30 (1) ◽  
pp. 122-135 ◽  
Author(s):  
Björn Berg

Nitrogen fertilization increased concentrations of N, P, S, and K in Scots pine (Pinus sylvestris L.) needle litter, and in those of N, S, and Ca in Norway spruce (Picea abies (L.) Karst.). Lignin concentrations increased for both species. Initial rates and limit values for decomposition were estimated using a simple equation. For Scots pine litter, initial rates ranged between 0.0618 and 0.2986%/day with P, K, N, and Mg being positively related, but lignin and Ca negatively related. For Norway spruce, initial rates were low (0.0455-0.1007%/day) and positively related with initial concentrations of water solubles, K, and P but negatively with N, Ca, and lignin. Limit values for Scots pine litter ranged from 53.1 to 94.3% decomposition in fertilized plots and from 71.5 to 93.2% in controls. They were negatively related to N concentrations and positively to Mn and Ca. Limit values for Norway spruce litter ranged from 53.8 to 74.3% in controls and from 48 to 71.3% in fertilized plots and were positively correlated to Mn and Ca but not to N. The paper concludes that N fertilization will increase the fraction of Scots pine litter that accumulates as humus but not for Norway spruce.

1989 ◽  
Vol 46 (Supplement) ◽  
pp. 553s-556s ◽  
Author(s):  
S. Huttunen ◽  
M. Turunen ◽  
J. Reinikainen

2001 ◽  
Vol 31 (2) ◽  
pp. 292-301 ◽  
Author(s):  
B Berg ◽  
V Meentemeyer

Litter fall data was available for 64 sites in Europe, most of them in Fennoscandia. Included were 48 sites with pine (Pinus spp.), mainly Scots pine (Pinus sylvestris L.), and 16 sites with spruce (Picea spp.), mainly Norway spruce (Picea abies (L.) Karst.). Regressions were calculated for needle and total litter fall against a set of climatic parameters, and the best simple relationships were obtained with annual actual evapotranspiration (AET) and other parameters including temperature, whereas for example, precipitation gave lower r values. For needle litter fall and AET using all data, the R2adj value was 0.635 (n = 64), and for needle litter for pine and spruce separately, the R2adj were 0.576 (n = 48) and 0.775 (n = 16), respectively. AET plus stand age gave highly significant relationships for both coniferous genera combined (R2adj = 0.683), and for pine and spruce separately the corresponding values were 0.655 and 0.843, respectively. Using all available data we found highly significant relationships between needle litter fall and total litter fall. For Fennoscandia, litter fall for Scots pine and Norway spruce were compared. AET versus needle litter fall gave highly significant relationships for Scots pine (R2adj = 0.448, n = 34) and for Norway spruce (R2adj = 0.678, n = 13); the relationships were significantly different from each other.


2017 ◽  
Vol 47 (4) ◽  
pp. 488-499 ◽  
Author(s):  
Minna Kivimäenpää ◽  
Sirkka Sutinen ◽  
Hanna Valolahti ◽  
Elina Häikiö ◽  
Johanna Riikonen ◽  
...  

Acclimation of conifer needle anatomy to climate change is poorly understood. We studied needle anatomy, shoot gas exchange, current-year shoot length, and stem diameter growth in Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) seedlings exposed to elevated ozone (1.35× to 1.5× ambient concentration) and elevated temperature (0.9–1.3 °C + ambient temperature) alone and in combination for two exposure seasons in two separate open-field experiments in central Finland. Pines grew also at two soil nitrogen levels. In spruce, warming increased mesophyll intercellular space and reduced gas exchange and shoot growth and made needles narrower and the epidermis and hypodermis thinner. In pine, warming made needles bigger, increased shoot and stem growth, stomatal row number, and proportions of vascular cylinder, phloem, and xylem and reduced the proportion of mesophyll. These responses indicate that pine benefited and spruce suffered from moderate warming. Ozone caused a thickening of epi- and hypo-dermis and a lower stomatal conductance in both species, reduced stomatal density in spruce, and increased proportions of phloem, xylem, and sclerenchyma and reduced growth in pine. Ozone responses suggest increased oxidative stress defense. Stomatal responses were affected by interactions of elevated temperature and ozone in both species. Nitrogen availability modified ozone and temperature responses, particularly in the vascular tissues in pine.


Sign in / Sign up

Export Citation Format

Share Document