Adenosine reduces the reverse mode of the Na+/Ca2+ exchanger in ferret cardiac fibres

2008 ◽  
Vol 86 (1-2) ◽  
pp. 46-54 ◽  
Author(s):  
W. Hleihel ◽  
A. Lafoux ◽  
N. Ouaini ◽  
C. Huchet-Cadiou

The aim of this study was to investigate the effects of adenosine on reverse mode Na+/Ca2+ exchange. In intact ferret cardiac trabeculae, Na+-free contractures were investigated after treating preparations with ryanodine, a sarcoplasmic reticulum Ca2+-channel inhibitor, and thapsigargin, a sarcoplasmic reticulum Ca2+-pump inhibitor added to suppress the sarcoplasmic reticulum function. The effects of adenosine (50–100 nmol/L), adenosine deaminase (ADA, 0.1–0.5 U/L), the A1 and A2A receptor agonists CCPA (3–100 nmol/L) and CGS 21680 (25–100 nmol/L), and the A1 and A2A receptor antagonists DPCPX (25 nmol/L) and ZM 241385 (25 nmol/L) were tested on Na+-free contractures. The application of adenosine (50–100 nmol/L) had no significant effect on the characteristics of the Na+-free contractures. However, the results show that treatment with ADA (0.3 U/L), adenosine (≥50 nmol/L) and CCPA, a specific A1 receptor agonist (3–100 nmol/L), all reduced the Na+-free contracture amplitude. In the presence of ADA, the effects of adenosine and CCPA were also reduced by a specific antagonist of A1 receptors (DPCPX, 25 nmol/L). Furthermore, adenosine, ADA, and CCPA did not affect the properties of the contractile apparatus in Triton-skinned fibres. It is therefore proposed that endogenous adenosine reduced the reverse mode of the Na+/Ca2+ exchanger by acting on A1 receptors present in the sarcolemmal membrane.

1992 ◽  
Vol 263 (4) ◽  
pp. H1161-H1169 ◽  
Author(s):  
H. B. Nuss ◽  
S. R. Houser

The hypothesis that Ca entry by the sarcolemmal Na-Ca exchange mechanism induces sarcoplasmic reticulum (SR) Ca release, loads the SR with Ca, and/or directly induces contractions by elevating cytosolic free Ca was tested in voltage-clamped feline ventricular myocytes. Intracellular Na concentration was increased by cellular dialysis to enhance Ca influx via "reverse-mode" Na-Ca exchange at positive membrane potentials, at which the "L-type" Ca current (ICa) should be small. Contractions were induced in the presence of Ca channel antagonists by depolarization to these potentials, suggesting that Ca influx via reverse-mode Na-Ca exchange was involved. These contractions had both phasic (SR related) and tonic components of shortening. They were smaller and began with more delay after depolarization than contractions which involved ICa. The magnitude of shortening was graded by the amount and duration of depolarization, suggesting that Ca influx via reverse-mode Na-Ca exchange has the capacity to induce and grade SR Ca release. Small slow contractions could be evoked in the presence of ryanodine (to impair SR function) and verapamil (to block ICa), supporting the idea that Ca influx via Na-Ca exchange is sufficient to directly activate the contractile proteins. Contractions induced by voltage steps to +10 mV, which were usually small when ICa was blocked, were potentiated if preceded by a voltage step to strongly positive potentials. This potentiation was inhibited by ryanodine, suggesting that Ca entry that occurs by Na-Ca exchange may be important for normal SR Ca loading.(ABSTRACT TRUNCATED AT 250 WORDS)


2006 ◽  
Vol 06 (04) ◽  
pp. 399-428
Author(s):  
R. MIFTAHOF

Electrophysiological mechanisms of co-transmission by serotonin (5-HT) and acetylcholine (ACh), co-expression of their receptor types, i.e., 5-HT type 3 and 4, nicotinic cholinerginc (nACh) and muscarinic cholinergic (μACh), and effects of selective and non-selective 5-HT3 and 5-HT4 receptor agonists/antagonists, on electromechanical activity of the gut were studied numerically. Two series of numerical experiments were performed. First, the dynamics of the generation and propagation of electrical signals interconnected with the primary sensory (AH) neurons, motor (S) neurons and smooth muscle cells were studied in a one-dimensional model. Simulations showed that stimulation of the 5-HT3 receptors reduced the threshold of activation of the mechanoreceptors by 17.6%. Conjoint excitation of the 5-HT3 and 5-HT4 receptors by endogenous serotonin converted the regular firing pattern of electrical discharges of the AH and S neurons to a beating mode. Activation confined to 5-HT3 receptors, located on the somas of the adjacent AH and S type neurons, could not sustain normal signal transduction between them. It required ACh as a co-transmitter and co-activation of the nACh receptors. Application of selective 5-HT3 receptor antagonists inhibited dose-dependently the production of action potentials at the level of mechanoreceptors and the soma of the primary sensory neuron and increased the threshold activation of the mechanoreceptors. Normal mechanical contractile activity depended on co-stimulation of the 5-HT4 and μACh receptors on the membrane of smooth muscle cells. In the second series of simulations, which involved a spatio-temporal model of the functional unit, effects of co-transmission by ACh and 5-HT on the electromechanical response in a segment of the gut were analyzed. Results indicated that propagation of the wave of excitation between the AH and S neurons within the myenteric nervous plexus in the presence of 5-HT3 receptor antagonists was supported by co-release of ACh. Co-stimulation of 5-HT3, nACh and μACh receptors impaired propulsive activity of the gut. The bolus showed uncoordinated movements. In an ACh-free environment Lotronex (GlaxoSmithKline), a 5-HT3 receptor antagonist, significantly increased the transit time of the pellet along the gut. In the presence of ACh, Lotronex produced intensive tonic-type contractions in the longitudinal and circular smooth muscle layers and eliminated propulsive activity. The 5HT4 receptor agonist, Zelnorm (Novartis), preserved the reciprocal electromechanical relationships between the longitudinal and circular smooth muscle layers. The drug changed the normal propulsive pattern of activity to an expulsive (non-mixing) type. Treatment of the gut with selective 5HT4 receptor antagonists increased the transit time by disrupting the migrating myoelectrical complex. Cisapride (Janssen), a mixed 5HT3 and 5HT4 receptor agonist, increased excitability of the AH and S neurons and the frequency of slow waves. Longitudinal and circular smooth muscle syncytia responded with the generation of long-lasting tonic contractions, resulting in a "squeezing" type of pellet movement. Comparison of the theoretical results obtained on one-dimensional and spatio-temporal models to in vivo and in vitro experimental data indicated satisfactory qualitative, and where available, quantitative agreement.


1994 ◽  
Vol 266 (5) ◽  
pp. F791-F796 ◽  
Author(s):  
R. M. Edwards ◽  
W. S. Spielman

We examined the effects of adenosine and adenosine analogues on arginine vasopressin (AVP)-induced increases in osmotic water permeability (Pf; micron/s) and adenosine 3',5'-cyclic monophosphate (cAMP) accumulation in rat inner medullary collecting ducts (IMCDs). When added to the bath, the A1 receptor agonist N6-cyclohexyladenosine (CHA) produced a rapid and reversible inhibition of AVP-stimulated (10 pM) Pf (1,781 +/- 195 to 314 +/- 85 microns/s at 0.3 microM CHA; n = 9). The inhibitory effect of CHA was concentration dependent, with a 50% inhibitory concentration of 10 nM. The effect of CHA was inhibited by prior exposure of IMCDs to the A1 receptor antagonist 1,3-dipropylxanthine-8-cyclopentylxanthine (DP-CPX; 1 microM) or by preincubation with pertussis toxin. CHA had no effect on cAMP-induced increases in Pf. In addition to CHA, adenosine and the nonselective agonist 5'-(N-ethylcarboxamido)-adenosine (NECA) inhibited AVP-dependent Pf by > or = 70%, whereas the A2 receptor agonist CGS-21680 had no effect. Luminal adenosine (0.1 mM) had no effect on basal or AVP-stimulated Pf. CHA, NECA, and adenosine but not CGS-21680 inhibited AVP-stimulated cAMP accumulation in a concentration-dependent manner (50% inhibitory concentrations 0.1–300 nM). The inhibitory effect of CHA on AVP-stimulated cAMP accumulation was attenuated by DPCPX. We conclude that adenosine, acting at the basolateral membrane, inhibits AVP action in the IMCD via interaction with A1 receptors. The inhibition occurs proximal to cAMP generation and likely involves an inhibitory G protein.


2002 ◽  
Vol 438 (3) ◽  
pp. 183-188 ◽  
Author(s):  
John R Fozard ◽  
Karen M Ellis ◽  
Maria F Villela Dantas ◽  
Bruno Tigani ◽  
Lazzaro Mazzoni

1983 ◽  
Vol 244 (3) ◽  
pp. H454-H457
Author(s):  
M. T. Knabb ◽  
R. Rubio ◽  
R. M. Berne

The effects of endogenous adenosine on rat atrial and ventricular slow action potentials (AP) were studied using theophylline, an adenosine receptor antagonist, or "micro" adenosine deaminase (mADA), small polypeptides having adenosine deaminase activity. Exogenous adenosine (10(-6) M) depressed slow APs at low and high isoproterenol concentrations and shifted the isoproterenol dose-response curve to the right in the atrium. In the ventricle, exogenous adenosine inhibited slow APs at low isoproterenol doses and only shifted the bottom of the dose-response relationship to the right. mADA (0.84 U) or theophylline (5 X 10(-5) M) potentiated the response to threshold concentrations of isoproterenol and caused a parallel shift of the curve to the left in the atrium but only shifted the bottom portion of the curve in the ventricle. This potentiation of slow APs in the presence of mADA or theophylline suggests that endogenous adenosine attenuates the response to isoproterenol in cardiac muscle.


1999 ◽  
Vol 276 (2) ◽  
pp. H341-H349 ◽  
Author(s):  
Gavin R. Norton ◽  
Angela J. Woodiwiss ◽  
Robert J. McGinn ◽  
Mojca Lorbar ◽  
Eugene S. Chung ◽  
...  

Presently, the physiological significance of myocardial adenosine A2a receptor stimulation is unclear. In this study, the influence of adenosine A2a receptor activation on A1 receptor-mediated antiadrenergic actions was studied using constant-flow perfused rat hearts and isolated rat ventricular myocytes. In isolated perfused hearts, the selective A2a receptor antagonists 8-(3-chlorostyryl)caffeine (CSC) and 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM-241385) potentiated adenosine-mediated decreases in isoproterenol (Iso; 10−8 M)-elicited contractile responses (+dP/d t max) in a dose-dependent manner. The effect of ZM-241385 on adenosine-induced antiadrenergic actions was abolished by the selective A1 receptor antagonist 1,3-dipropyl-8-cyclopentylxanthine (10−7 M), but not the selective A3 receptor antagonist 3-ethyl-5-benzyl-2-methyl-4-phenylethynyl-6-phenyl-1,4-(±)-dihydropyridine-3,5-dicarboxylate (MRS-1191, 10−7 M). The A2a receptor agonist carboxyethylphenethyl-aminoethyl-carboxyamido-adenosine (CGS-21680) at 10−5 M attenuated the antiadrenergic effect of the selective A1 receptor agonist 2-chloro- N 6-cyclopentyladenosine (CCPA), whereas CSC did not influence the antiadrenergic action of this agonist. In isolated ventricular myocytes, CSC potentiated the inhibitory action of adenosine on Iso (2 × 10−7 M)-elicited increases in intracellular Ca2+concentration ([Ca2+]i) transients but did not influence Iso-induced changes in [Ca2+]itransients in the absence of exogenous adenosine. These results indicate that adenosine A2areceptor antagonists enhance A1-receptor-induced antiadrenergic responses and that A2a receptor agonists attenuate (albeit to a modest degree) the antiadrenergic actions of A1 receptor activation. In conclusion, the data in this study support the notion that an important physiological role of A2a receptors in the normal mammalian myocardium is to reduce A1 receptor-mediated antiadrenergic actions.


2001 ◽  
Vol 281 (1) ◽  
pp. F114-F122 ◽  
Author(s):  
Osamu Saito ◽  
Yasuhiro Ando ◽  
Eiji Kusano ◽  
Yasushi Asano

Previous studies reported the existence of both D1- and D2-like receptors in the cortical collecting duct (CCD). However, especially with regard to natriuresis, it remains controversial. In the present study, rabbit CCD was perfused to characterize the receptor subtypes responsible for the tubular actions. Basolateral dopamine (DA) induced a dose-dependent depolarization of transepithelial voltage. Basolateral domperidone, a D2-like receptor antagonist, abolished depolarization, whereas SKF-81297, a D1-like receptor agonist, showed no significant change. In addition, bromocriptine, a D2-like receptor agonist, also caused depolarization, whereas SKF-81297, a D1-like receptor agonist, did not depolarize significantly. Moreover, RBI-257, a D4-specific antagonist, reversed the basolateral DA-induced depolarization. In contrast to the basolateral side, luminal DA caused depolarization via a D1-like receptor; however the change was less than that for basolateral DA. For further evaluation, 22Na+ flux ( J Na) was measured to confirm the effect of DA on Na+ transport. Basolateral DA also caused a suppression of J Na, and this reaction was abolished by domperidone. These results suggested that the basolateral D2-like receptor is mainly responsible for the natriuretic action of DA in rabbit CCD.


Sign in / Sign up

Export Citation Format

Share Document