Effective vascular compliance and venous diameter in dogs
Total effective vascular compliance was measured repeatedly in open-chest dogs without circulatory arrest, utilizing a closed-circuit venous bypass system with a constant cardiac output. Mutual inductance coils were used to measure the diameter of the inferior vena cava above the diaphragm at the position where the pressure change was recorded during a volume load (ΔV). In all experiments, there was a relationship which tended to be curvilinear between the diameter of the inferior vena cava and the venous pressure before ΔV. No relationship was demonstrated between the initial diameter or pressure and the calculated effective vascular compliance. During aortic constriction or infusion of noradrenaline, the effective compliance was reduced in value at any given initial venous diameter and pressure. An unaltered venous diameter and plasma volume excluded the possibility of a large change in initial venous volume as a cause of the observed changes in compliance during aortic constriction or during infusion of noradrenaline. A relationship was observed between compliance and calculated venous wall tension so that as the wall tension, developed during a fixed volume load, increased, there was an associated reduction in compliance. These results demonstrate that the measurement of effective compliance provides an assessment of combined active and passive venous wall tension and venous tone.