Human chorionic gonadotropin and luteinizing hormone-releasing hormone reverse the blockade of ovulation in pregnant mare's serum gonadotropin-primed immature rats by the anti-androgenic drug, hydroxyflutamide

1988 ◽  
Vol 66 (6) ◽  
pp. 783-787 ◽  
Author(s):  
Yallampalli Chandrasekhar ◽  
David T. Armstrong

The present study was designed to examine mechanism(s) of the anti-ovulatory action of the anti-androgen, hydroxyflutamide (OH-F). Prepubertal rats were treated with 4 IU pregnant mare's serum gonadotropin (PMSG) (day −2) to induce first estrus and ovulation. They received OH-F in sesame oil or oil alone at 08:00 and 20:00 h on day 0 (the day of proestrus) and ovulations were assessed on the morning of day 1. Eighty-three percent of control animals ovulated with a mean of 7.7 ± 1.1 corpora lutea per rat. Hydroxyflutamide blocked ovulation in all but 2 of the 12 rats receiving this drug alone. All the OH-F treated rats that received 5 and 25 IU human chorionic gonadotropin (hCG) ovulated with means ± SEM of 9.1 ± 0.1 and 7.3 ± 1.4 corpora lutea per rat, respectively. The dose of 0.2 IU hCG was essentially ineffective, while the effect of 1.0 IU hCG was intermediate. At the dose of 20 ng and above (100 and 500 ng) luteining hormone-releasing hormone (LHRH) completely overcame the ovulation blockade in the OH-F treated animals, while a 4-ng dose was ineffective. At 18:00 h on the day of proestrus, serum LH levels in control animals were 17.56 ± 2.60 ng/mL, which were 920% above basal levels (1.90 ± 0.13) indicating a spontaneous LH surge. This surge was suppressed in OH-F treated rats. Injection of LHRH, at the dose of 20 ng and above, reinstated the LH release in OH-F treated animals. Thus, the anti-androgen, OH-F, inhibits ovulation in PMSG-treated immature rats through its interference with the preovulatory LH surge; the inhibition can be reversed by hCG or LHRH. Hydroxyflutamide does not appear to interfere at the level of the pituitary, but may have direct action at the hypothalamic and (or) extrahypothalamic sites involved in the generation of positive feedback signals that control LH release.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Adam J. Ziecik ◽  
Jan Klos ◽  
Katarzyna Gromadzka-Hliwa ◽  
Mariola A. Dietrich ◽  
Mariola Slowinska ◽  
...  

AbstractDifferent strategies are used to meet optimal reproductive performance or manage reproductive health. Although exogenous human chorionic gonadotropin (hCG) and gonadotropin-releasing hormone (GnRH) agonists (A) are commonly used to trigger ovulation in estrous cycle synchronization, little is known about their effect on the ovarian follicle. Here, we explored whether hCG- and GnRH-A-induced native luteinizing hormone (LH) can affect the endocrine and molecular milieus of ovarian preovulatory follicles in pigs at different stages of sexual development. We collected ovaries 30 h after hCG/GnRH-A administration from altrenogest and pregnant mare serum gonadotropin (eCG)-primed prepubertal and sexually mature gilts. Several endocrine and molecular alternations were indicated, including broad hormonal trigger-induced changes in follicular fluid steroid hormones and prostaglandin levels. However, sexual maturity affected only estradiol levels. Trigger- and/or maturity-dependent changes in the abundance of hormone receptors (FSHR and LHCGR) and proteins associated with lipid metabolism and steroidogenesis (e.g., STAR, HSD3B1, and CYP11A1), prostaglandin synthesis (PTGS2 and PTGFS), extracellular matrix remodeling (MMP1 and TIMP1), protein folding (HSPs), molecular transport (TF), and cell function and survival (e.g., VIM) were observed. These data revealed different endocrine properties of exogenous and endogenous gonadotropins, with a potent progestational/androgenic role of hCG and estrogenic/pro-developmental function of LH.


1991 ◽  
Vol 19 (03n04) ◽  
pp. 251-258 ◽  
Author(s):  
Satoshi Usuki

The presence of endothelin-1 (ET) and effect of Tokishakuyakusan (TS) on ET in rat corpora lutea (CL) was investigated in superovulated ovaries, induced with pregnant mare's serum gonadotropin and human chorionic gonadotropin. A high concentration of ET was found in the CL. The level of ET was significantly lower in the CL from TS-treated rats than that in TS-untreated rats (402.68 versus 575.60 pg/g wet weight, p < 0.05). In contrast, the ET levels in plasma were by far lower than those in CL. These data indicate an inhibitory effect of TS on ET, an intraovarian peptide, production or accumulation in the CL.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
A. Smirnova ◽  
M. Anshina ◽  
E. Shalom Paz ◽  
A. Ellenbogen

Abstract Background The concept of using a gonadotropin-releasing hormone agonist (GnRH-a) instead of human chorionic gonadotropin for triggering ovulation in patients treated with an antagonist protocol for in vitro fertilization (IVF) has become a routine clinical practice. It may promote oocyte nuclear maturation, resumption of meiosis and cumulus expansion. It seems that this attempt could be beneficial in an in vitro maturation (IVM) oocyte cycle performed for polycystic ovarian syndrome as well as for other indications such as urgent fertility preservation in patients with malignancies or unusual indications. Case presentation We present the case of a Caucasian patient who needed fertility preservation when routine natural IVF treatment did not yield oocyte retrieval, followed by three IVM cycles, priming ovulation with a GnRH-a. In total, 12 oocytes were obtained, all matured 4.5 hours after incubation in maturation media. The fertilization rate after intracytoplasmic sperm injection was 83%. Six good-quality embryos were vitrified. Conclusions It seems that triggering with a GnRH-a in selected cases may replace human chorionic gonadotropin in IVM of oocytes and could be highly beneficial in terms of obtaining high-grade embryos and possible pregnancy.


Sign in / Sign up

Export Citation Format

Share Document