Ceratomyxa shasta (Myxozoa: Myxosporea) in juvenile chinook salmon (Oncorhynchus tshawytscha): experimental transmission and natural infections in the Fraser River, British Columbia

1985 ◽  
Vol 63 (7) ◽  
pp. 1737-1740 ◽  
Author(s):  
Susan M. Bower

Ceratomyxa shasta (mainly trophozoites) from the intestinal tract of a naturally infected juvenile chinook salmon (Oncorhynchus tshawytscha) developed in the coelom of laboratory-reared chinook salmon when inoculated intraperitoneally. All developmental stages were observed. Successful subpassages were accomplished by intraperitoneal inoculation of trophozoites and sporoblasts, but an infection did not develop when these stages were pipetted into the esophagus of susceptible fish. Heavy infections, including the presence of C. shasta sporoblasts or spores, were observed in 2 of 28 feral juvenile chinook salmon seined from the Fraser River estuary in late July and early August. Trophozoite-like cells were observed in six other chinook salmon from this group. No C. shasta were observed in 15 juvenile sockeye salmon (Oncorhynchus nerka) caught in the estuary along with the chinook salmon.


2013 ◽  
Vol 97 (6) ◽  
pp. 731-740 ◽  
Author(s):  
Thomas P. Quinn ◽  
J. Anne Shaffer ◽  
Justin Brown ◽  
Nicole Harris ◽  
Chris Byrnes ◽  
...  


1986 ◽  
Vol 43 (7) ◽  
pp. 1386-1397 ◽  
Author(s):  
C. D. Levings ◽  
C. D. McAllister ◽  
B. D. Chang

From March 1982 to December 1983, juvenile chinook salmon (Oncorhynchus tshawytscha) were sampled by beach-seine in the Campbell River estuary and adjacent waters of Discovery Passage in order to examine estuarine use by wild and hatchery stocks. Wild juvenile chinook entered the estuary as migrant fry and were present in the estuarine zone mainly in late April to June, in the transition zone in mid-May to July, and in the marine zone in July. Hatchery fish were released from early May to early July. Maximum catches of wild stocks were similar in the estuarine and transition zones, while the maximum catches of most hatchery stocks were higher in the transition zone. For both wild and hatchery chinook, catches in the marine zone were much lower than in the estuarine and transition zones. Wild fry resided in the estuary for 40–60 d, while most hatchery fish used the estuary for about one-half this period. Wild stocks showed a relatively constant rate of increase in mean size from May to September. Higher rates of increase in the mean size of hatchery fish were shown by groups with earlier release dates and smaller mean sizes. Residency time and growth rates for wild fish were comparable with those observed in an estuary without hatchery fish. Potential for interaction between wild and hatchery stocks was greatest in the transition zone, where hatchery fish were most abundant and because hatchery releases occurred when catches of wild fish were highest in this foreshore area.



1988 ◽  
Vol 23 (1) ◽  
pp. 100-113 ◽  
Author(s):  
I. H. Rogers ◽  
J. A. Servizi ◽  
C. D. Levings

Abstract Juvenile chinook salmon were sampled from August 1986 to March 1987 at stations near Prince George and Quesnel, influenced by sewage and pulp mill discharges. Maximum densities of 0.2 fish·mࢤ2 were recorded. Salmon were collected at reference sites in November 1986 and at Agassiz in April 1987. Fingerling chinook were exposed at 0.7°C to a commercial wood preservative containing 2,3,4,6 - tetrachlorophenol (TeCP) and pentachlorophenol (PCP) in the laboratory to simulate winter conditions in the upper Fraser River. Fish exposed for 62 days to 2 ug·Lࢤ1 contained a mean of 224 ng·gࢤ1 TeCP and 431 ng·gࢤ1 PCP. Chlorophenol uptake in feral fish was low. However, 3,4,5-trichloro-guaiacol levels to 304 ng·gࢤ1 and tetrachloroguaiacol values to 136 ng·gࢤ1 were measured in March. Fish from Agassiz, 518 km downstream of Quesnel, also contained these two substances. Thus chinook salmon can bioconcentrate persistent chlorophenols and chloroguaiacols directly from cold water (< 1°C). The biological consequences are uncertain.



2000 ◽  
Vol 57 (2) ◽  
pp. 405-413 ◽  
Author(s):  
J Y Wilson ◽  
R F Addison ◽  
D Martens ◽  
R Gordon ◽  
B Glickman

Juvenile chinook salmon (Oncorhynchus tshawytscha) were captured at six sites on the upper Fraser, Nechako, and Thompson rivers, British Columbia, Canada. Biological responses were measured in the liver to assess the effects of contaminants on the fish before they began migration downstream. Both ethoxyresorufin-O-deethylase (EROD) activity and CYP 1A concentrations were significantly enhanced, being two- to three-fold higher in Fraser River samples compared with those fish from reference sites on the Nechako River. DNA adduct concentrations were two- to four-fold higher in Fraser River fish, although liver histopathology appeared unaffected. Polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and polychlorinated biphenyls (PCBs) in the carcasses contributed to total contaminant burdens of less than 1 pg·g-1. Polycyclic aromatic hydrocarbon (PAH) metabolites were undetectable in nearly all samples of bile. There were strong correlations between EROD activity, CYP 1A induction, and DNA adduct concentrations but no clear correlation between these responses and PCDD, PCDF, or PCB concentrations.





2019 ◽  
pp. 13-15
Author(s):  
Lia Chalifour ◽  
David Scott ◽  
Misty MacDuffee ◽  
John Dower ◽  
Terry Beacham ◽  
...  


1992 ◽  
Vol 49 (9) ◽  
pp. 1883-1889 ◽  
Author(s):  
L. Margolis ◽  
T. E. McDonald ◽  
D. J. Whitaker

Approximately 3.3% of more than 3500 seaward migrating juvenile chinook salmon (Oncorhynchus tshawytscha) collected from the lower reaches and off the mouth of the Fraser River, British Columbia, between March and August 1985–87 were infected with Ceratomyxa shasta (Protozoa: Myxosporea). The fish were held live for up to 151 d before examination to allow the infections to become patent. The first infected fish were detected in samples taken in late May to early June, approximately 4 wk after the river water temperature had reached 10 °C. By this time, 40–65% of the fish had been collected, indicating that the majority of the juvenile chinook salmon had left the Fraser River before the infective stage of the parasite was present. Significant differences in prevalence of C. shasta were associated with both the migration route chosen by the fish and their age. Fish that used the lower flow rate North Arm had a greater prevalence (6.8%) of infection than those that migrated down the Main Arm (2.1%). Age 0 fish had a significantly higher prevalence (5.2%) of C. shasta than the age 1 group (1.5%). It is concluded that C. shasta is not a major cause of mortality of downstream migrating juvenile Fraser River chinook salmon.



Sign in / Sign up

Export Citation Format

Share Document