Precocial male maturation in laboratory-reared populations of chinook salmon, Oncorhynchus tshawytscha

1989 ◽  
Vol 67 (7) ◽  
pp. 1665-1669 ◽  
Author(s):  
Eric B. Taylor

The incidence of precocial male maturation in yearling chinook salmon, Oncorhynchus tshawytscha, was examined in four laboratory-reared populations. Slim Creek and Bowron River chinook salmon were about 4 weeks older than Harrison and Nanaimo river chinook salmon when sampled (14 vs. 13 months of age), but were also 20–40 g smaller. Approximately 29, 12, 0, and 0% of all males were precocious in Bowron River, Slim Creek, Harrison River, and Nanaimo River chinook salmon, respectively. Precocial male chinook salmon had gonadosomatic indices of about 5–6%, whereas immature salmon from all populations had indices under 1%. Precocial male chinook salmon were more robust bodied than immature salmon; precocial males had deeper bodies, deeper heads, and larger adipose fins. Variation among the study populations in the incidence of precocial male maturation may be related to differences among the populations in migration distance to the sea or in juvenile freshwater rearing life history. The chinook salmon would probably be a productive species with which to study the evolutionary ecology of precocial maturity in Pacific salmonids.

2016 ◽  
Vol 73 (6) ◽  
pp. 921-934 ◽  
Author(s):  
R. Kirk Schroeder ◽  
Luke D. Whitman ◽  
Brian Cannon ◽  
Paul Olmsted

Migratory and rearing pathways of juvenile spring Chinook salmon (Oncorhynchus tshawytscha) were documented in the Willamette River basin to identify life histories and estimate their contribution to smolt production and population stability. We identified six primary life histories that included two phenotypes for early migratory tactics: fry that migrated up to 140–200 km shortly after emergence (movers) and fish that reared for 8–16 months in natal areas (stayers). Peak emigration of juvenile salmon from the Willamette River was in June–July (subyearling smolts), March–May (yearling smolts), and November–December (considered as “autumn smolts”). Alternative migratory behaviors of juvenile salmon were associated with extensive use of diverse habitats that eventually encompassed up to 400 rkm of the basin, including tributaries in natal areas and large rivers. Juvenile salmon that reared in natal reaches and migrated as yearlings were the most prevalent life history and had the lowest temporal variability. However, the total productivity of the basin was increased by the contribution of fish with dispersive life histories, which represented over 50% of the total smolt production. Life-history diversity reduced the variability in the total smolt population by 35% over the weighted mean of individual life histories, providing evidence of a considerable portfolio effect through the asynchronous contributions of life histories. Protecting and restoring a diverse suite of connected habitats in the Willamette River basin will promote the development and expression of juvenile life histories, thereby providing stability and resilience to native salmon populations.


Author(s):  
Colin L. Nicol ◽  
Jeffrey C. Jorgensen ◽  
Caleb B. Fogel ◽  
Britta Timpane-Padgham ◽  
Timothy J. Beechie

In the Pacific Northwest, USA, climate change is expected to result in a shift in average hydrologic conditions and increase variability. The relative vulnerabilities to peak flow changes among salmonid species within the same basin have not been widely evaluated. We assessed the impacts of predicted increases in peak flows on four salmonid populations in the Chehalis River basin. Coupling observations of peak flows, emissions projections, and multi-stage Beverton–Holt matrix-type life cycle models, we ran 100-year simulations of spawner abundance under baseline, mid-century, and late-century climate change scenarios. Coho (Oncorhynchus kisutch) and spring Chinook salmon (Oncorhynchus tshawytscha) shared the highest projected increase in interannual variability (SD = ±15%). Spring Chinook salmon had the greatest reduction in median spawner abundance (–13% to –15%), followed by coho and fall Chinook salmon (–7% to –9%), then steelhead (Oncorhynchus mykiss) (–4%). Our results show that interspecies and life history variability within a single basin is important to consider. Species with diverse age structures are partially buffered from population variability, which may increase population resilience to climate change.


1997 ◽  
Vol 54 (6) ◽  
pp. 1235-1245 ◽  
Author(s):  
M J Unwin ◽  
G J Glova

Chinook salmon (Oncorhynchus tshawytscha) spawning runs in Glenariffe Stream, New Zealand, exhibited significant changes in life history traits following supplementation releases of hatchery-reared juveniles. Total run strength did not change but the proportion of naturally produced fish declined to 34%. Attempts to separate spawners of natural and hatchery origin were unsuccessful, and 31-48% of natural spawners are now of hatchery origin. Hatchery males were smaller at age 2 and 3 than males of natural origin, and more often matured as jacks, producing an 86-mm decrease in mean fork length over 28 years. There was no change in length at age or age at maturity for female spawners. The proportion of jacks entering Glenariffe Stream each year was positively correlated with the proportion of jacks in the ensuing cohort. Most differences between fish of natural and hatchery origin were related to hatchery rearing practices, but the decline in age at maturity among naturally produced males appears to reflect traits inherited from parent stock of hatchery origin. Hatchery releases may also favour the survival of ocean-type fry over stream-type fry, possibly reversing a tendency for stream-type behaviour to evolve in response to the lack of estuaries on most New Zealand chinook salmon rivers.


1992 ◽  
Vol 49 (12) ◽  
pp. 2621-2629 ◽  
Author(s):  
S. W. Johnson ◽  
J. F. Thedinga ◽  
K. V. Koski

Distribution, abundance, habitat preference, migration and residence timing, seawater tolerance, and size were determined for juvenile ocean-type (age 0) chinook salmon (Oncorhynchus tshawytscha) in the Situk River, Alaska. Chinook primarily occupied main-stem habitats (channel edges in spring, pools and willow edges in summer). Peak chinook densities in the upper and lower main stem were 96 and 76 fish/100 m2, respectively. Chinook migrated downstream in two phases: a spring dispersal of emergent fry and a summer migration. Chinook marked in the upper river in late June and early July were recaptured 20 km downstream in the lower river in late July. Marked chinook resided in the lower river up to 34 d. Mean fork length of chinook in the lower river increased from 40 mm in May to 80 mm in early August. By late August, chinook had emigrated from the lower river at a size of approximately 80 mm. Fish this size were seawater tolerant and had the physical appearance of smolts. Ocean-type chinook in the Situk River are unique because in most Alaskan streams, chinook are stream-type (rear in freshwater at least 1 yr).


1993 ◽  
Vol 50 (7) ◽  
pp. 1414-1421 ◽  
Author(s):  
Thomas P. Quinn ◽  
Martin J. Unwin

Chinook salmon (Oncorhynchus tshawytscha) were introduced to New Zealand, apparently from a single California population, and have been self-sustaining since about 1905. Salmon from the Waimakariri, Rakaia, Rangitata, and Waitaki rivers differed in various life history traits. The proportion of stream-type adults ranged from 29.1 to 75.6% in Rakaia and Waimakariri tributaries, respectively. Average age at maturity not only differed among the major rivers but also between two tributaries within the Rakaia River catchment. Length at age varied among rivers, the differences being most pronounced in older fish. Age structure and size at age combined to produce 91-, and 73-mm differences in mean length of males and females, respectively, among populations. Waitaki River salmon were not only long at age but also heavier for their length than other populations. The timing of entry into freshwater varied by over 1 mo between the Rakaia and Waitaki rivers, and median date of arrival on spawning grounds varied by 16 d between Rakaia and Waimakariri river tributaries. These life history traits are influenced, to varying degrees, by genetic and environmental factors. However, the suite of differences indicates that considerable adaptation to local conditions has occurred in about 20 generations.


2011 ◽  
Vol 68 (4) ◽  
pp. 603-617 ◽  
Author(s):  
Jessica A. Miller ◽  
Virginia L. Butler ◽  
Charles A. Simenstad ◽  
David H. Backus ◽  
Adam J.R. Kent

Conservation planning often occurs only after a species has been extirpated from portions of its historical range and limited information is available on life history diversity prior to development. To provide information on Chinook salmon ( Oncorhynchus tshawytscha ) life history before and after local extirpation, we examined the chemical (87Sr:86Sr, Sr:Ca) and structural composition of modern and archaeological otoliths from the upper Columbia River. We compared otoliths from modern spring (yearling migrant, n = 15) and summer–fall (yearling (n = 7) and subyearling (n = 12) migrants) runs with those from extirpated runs (n = 8) to estimate the number of and similarity among natal environments and reconstruct aspects of the migratory history. Presumptive natal sources were most similar between the archaeological collections and the modern summer–fall run. Chinook salmon represented by the archaeological otoliths also displayed life history traits, including size at freshwater emigration and adult size at return to fresh water, most similar to the summer–fall subyearling run. These data indicate that there is the potential to maintain aspects of predevelopment Chinook salmon life histories in the Columbia River, and strategies that promote maintenance of that life history diversity may be warranted.


Heredity ◽  
2002 ◽  
Vol 89 (4) ◽  
pp. 311-317 ◽  
Author(s):  
D D Heath ◽  
L Rankin ◽  
C A Bryden ◽  
J W Heath ◽  
J M Shrimpton

Sign in / Sign up

Export Citation Format

Share Document