A new formalism of nuclear matter: tensor-optimized Fermi sphere method

2021 ◽  
Vol 57 (2) ◽  
Author(s):  
Taiichi Yamada
2019 ◽  
Vol 2019 (11) ◽  
Author(s):  
T Yamada ◽  
T Myo ◽  
H Toki ◽  
H Horiuchi ◽  
K Ikeda

Abstract The tensor-optimized Fermi sphere (TOFS) theory is applied first for the study of the property of nuclear matter using the Argonne V4$^\prime$$NN$ potential. In the TOFS theory, the correlated nuclear matter wave function is taken to be a power-series type of the correlation function $F$, where $F$ can induce central, spin–isospin, tensor, etc. correlations. This expression has been ensured by a linked cluster expansion theorem established in the TOFS theory. We take into account the contributions from all the many-body terms arising from the product of the nuclear matter Hamiltonian $\mathcal{H}$ and $F$. The correlation function is optimally determined in the variation of the total energy of nuclear matter. It is found that the density dependence of the energy per particle in nuclear matter is reasonably reproduced up to the nuclear matter density $\rho \simeq 0.20$ fm$^{-3}$ in the present numerical calculation, in comparison with other methods such as the Brueckner–Hartree–Fock approach.


1987 ◽  
Vol 48 (C2) ◽  
pp. C2-301-C2-304
Author(s):  
M. BALDO ◽  
G. GIANSIRACUSA ◽  
U. LOMBARDO

2015 ◽  
Vol 11 (3) ◽  
pp. 3224-3228
Author(s):  
Tarek El-Ashram

In this paper we derived a new condition of formation and stability of all crystalline systems and we checked its validity andit is found to be in a good agreement with experimental data. This condition is derived directly from the quantum conditionson the free electron Fermi gas inside the crystal. The new condition relates both the volume of Fermi sphere VF andvolume of Brillouin zone VB by the valence electron concentration VEC as ;𝑽𝑭𝑽𝑩= 𝒏𝑽𝑬𝑪𝟐for all crystalline systems (wheren is the number of atoms per lattice point).


2015 ◽  
Vol 11 (1) ◽  
pp. 2927-2949
Author(s):  
Lyubov E. Lokot

In the paper a theoretical study the both the quantized energies of excitonic states and their wave functions in grapheneand in materials with "Mexican hat" band structure dispersion as well as in zinc-blende GaN is presented. An integral twodimensionalSchrödinger equation of the electron-hole pairing for a particles with electron-hole symmetry of reflection isexactly solved. The solutions of Schrödinger equation in momentum space in studied materials by projection the twodimensionalspace of momentum on the three-dimensional sphere are found exactly. We analytically solve an integral twodimensionalSchrödinger equation of the electron-hole pairing for particles with electron-hole symmetry of reflection. Instudied materials the electron-hole pairing leads to the exciton insulator states. Quantized spectral series and lightabsorption rates of the excitonic states which distribute in valence cone are found exactly. If the electron and hole areseparated, their energy is higher than if they are paired. The particle-hole symmetry of Dirac equation of layered materialsallows perfect pairing between electron Fermi sphere and hole Fermi sphere in the valence cone and conduction cone andhence driving the Cooper instability. The solutions of Coulomb problem of electron-hole pair does not depend from a widthof band gap of graphene. It means the absolute compliance with the cyclic geometry of diagrams at justification of theequation of motion for a microscopic dipole of graphene where >1 s r . The absorption spectrums for the zinc-blendeGaN/(Al,Ga)N quantum well as well as for the zinc-blende bulk GaN are presented. Comparison with availableexperimental data shows good agreement.


2014 ◽  
Author(s):  
Mathias Neuman ◽  
Jens Langelage ◽  
Owe Philipsen

Sign in / Sign up

Export Citation Format

Share Document