scholarly journals Ground state of the hydrogen atom via Dirac equation in a minimal-length scenario

Author(s):  
T. L. Antonacci Oakes ◽  
R. O. Francisco ◽  
J. C. Fabris ◽  
J. A. Nogueira
2020 ◽  
Vol 11 (07) ◽  
pp. 1075-1090
Author(s):  
Claude Daviau​ ◽  
Jacques Bertrand ◽  
Raymond Albert Ng
Keyword(s):  

2021 ◽  
pp. 1-26
Author(s):  
Tianfang Wang ◽  
Wen Zhang ◽  
Jian Zhang

In this paper we study the Dirac equation with Coulomb potential − i α · ∇ u + a β u − μ | x | u = f ( x , | u | ) u , x ∈ R 3 where a is a positive constant, μ is a positive parameter, α = ( α 1 , α 2 , α 3 ), α i and β are 4 × 4 Pauli–Dirac matrices. The Dirac operator is unbounded from below and above so the associate energy functional is strongly indefinite. Under some suitable conditions, we prove that the problem possesses a ground state solution which is exponentially decay, and the least energy has continuous dependence about μ. Moreover, we are able to obtain the asymptotic property of ground state solution as μ → 0 + , this result can characterize some relationship of the above problem between μ > 0 and μ = 0.


2020 ◽  
Vol 80 (8) ◽  
Author(s):  
J. M. Hoff da Silva ◽  
D. Beghetto ◽  
R. T. Cavalcanti ◽  
R. da Rocha

Abstract We investigate the effective Dirac equation, corrected by merging two scenarios that are expected to emerge towards the quantum gravity scale. Namely, the existence of a minimal length, implemented by the generalized uncertainty principle, and exotic spinors, associated with any non-trivial topology equipping the spacetime manifold. We show that the free fermionic dynamical equations, within the context of a minimal length, just allow for trivial solutions, a feature that is not shared by dynamical equations for exotic spinors. In fact, in this coalescing setup, the exoticity is shown to prevent the Dirac operator to be injective, allowing the existence of non-trivial solutions.


2009 ◽  
Vol 131 (12) ◽  
pp. 4335-4345 ◽  
Author(s):  
Elizabeth A. Mader ◽  
Virginia W. Manner ◽  
Todd F. Markle ◽  
Adam Wu ◽  
James A. Franz ◽  
...  

Atoms ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 33 ◽  
Author(s):  
Eugene Oks

In one of our previous papers, it was shown that for the ground state of hydrogenic atoms/ions, it is possible to match the interior (inside the nucleus) solution of the Dirac equation with the singular exterior solution of the Dirac equation, so that the singular solution should not be rejected for the ground state of hydrogenic atoms/ions. In that paper, there was presented also the first experimental proof of the existence of this Alternative Kind of Hydrogen Atoms (AKHA)—by showing that the presence of the AKHA solves a long-standing mystery of the huge discrepancy between the experimental and previous theoretical results concerning the high-energy tail of the linear momentum distribution in the ground state of hydrogen atoms. In another paper, we showed that for hydrogen atoms, the singular solution of the Dirac equation outside the proton is legitimate not just for the ground state 12S1/2, but also for the states 22S1/2, 32S1/2 and so on: it is legitimate for all the discrete states n2S1/2. Moreover, the singular exterior solution is legitimate also for the l = 0 states of the continuous spectrum. In that paper, we demonstrated that the AKHA can be the basis for explaining the recent puzzling astrophysical observational results concerning the redshifted radio line 21 cm from the early Universe. Thus, there seems to be the astrophysical evidence of the existence of the AKHA—in addition to the already available observational proof of their existence from atomic experiments. In the present paper, we point out that the AKHA provide an alternative view on dark matter—without resorting to new subatomic particles or dramatically changing the existing physical laws. This is because due to the selection rules, the AKHA do not have state that can be coupled by the electric dipole radiation. We also reformulate the above theoretical results in terms that hydrogen atoms can have two flavors: one flavor corresponding to the regular solution outside the proton, another—to the singular solution outside the proton, both solutions corresponding to the same energy. Since this means the additional degeneracy, then according to the fundamental theorem of quantum mechanics, there should be an additional conserved quantity, which we call isohydrogen spin (isohyspin). Further atomic experiments for accurately measuring the high-energy tail of the linear momentum distribution in the ground state of hydrogen atoms, as well as further observational studies of the redshifted 21 cm radio line from the early Universe, could provide a further proof that dark matter or a part of it is the AKHA.


Sign in / Sign up

Export Citation Format

Share Document