scholarly journals Exotic fermionic fields and minimal length

2020 ◽  
Vol 80 (8) ◽  
Author(s):  
J. M. Hoff da Silva ◽  
D. Beghetto ◽  
R. T. Cavalcanti ◽  
R. da Rocha

Abstract We investigate the effective Dirac equation, corrected by merging two scenarios that are expected to emerge towards the quantum gravity scale. Namely, the existence of a minimal length, implemented by the generalized uncertainty principle, and exotic spinors, associated with any non-trivial topology equipping the spacetime manifold. We show that the free fermionic dynamical equations, within the context of a minimal length, just allow for trivial solutions, a feature that is not shared by dynamical equations for exotic spinors. In fact, in this coalescing setup, the exoticity is shown to prevent the Dirac operator to be injective, allowing the existence of non-trivial solutions.

2018 ◽  
Vol 27 (14) ◽  
pp. 1847028 ◽  
Author(s):  
Ana Alonso-Serrano ◽  
Mariusz P. Da̧browski ◽  
Hussain Gohar

The existence of a minimal length, predicted by different theories of quantum gravity, can be phenomenologically described in terms of a generalized uncertainty principle. We consider the impact of this quantum gravity motivated effect onto the information budget of a black hole and the sparsity of Hawking radiation during the black hole evaporation process. We show that the information is not transmitted at the same rate during the final stages of the evaporation, and that the Hawking radiation is not sparse anymore when the black hole approaches the Planck mass.


2018 ◽  
Vol 33 (39) ◽  
pp. 1850231 ◽  
Author(s):  
A. Armat ◽  
S. Mohammad Moosavi Nejad

In this paper, our main aim is to obtain the transmission (T) and the reflection (R) coefficients for one-dimensional scattering state of the spin-[Formula: see text] particles in an interaction with a special nuclear potential. For this reason, at first, we consider Dirac equation and then obtain the Milne’s nonlinear differential equation due to minimal length from Schrödinger-like equation and then calculate the T- and R-coefficients using one-dimensional Woods–Saxon potential on the basis of the generalized uncertainty principle. Finally, we will check the validity and the correctness of our results.


Author(s):  
Aheibam Keshwarjit Singh ◽  
Irom Ablu Meitei ◽  
Telem Ibungochouba Singh ◽  
Kangujam Yugindro Singh

In this paper, we solve the Dirac Equation in curved space–time, modified by the generalized uncertainty principle, in the presence of an electromagnetic field. Using this, we study the tunneling of [Formula: see text]-spin fermions from Kerr–Newman black hole. Corrections to the Hawking temperature and entropy of the black hole due to quantum gravity effects are also discussed.


2021 ◽  
Author(s):  
Latevi Mohamed Lawson

Abstract More recently in J. Phys. A: Math. Theor. 53, 115303 (2020), we have introduced a set of noncommutative algebra that describes the space-time at the Planck scale. The interesting significant result we found is that the generalized uncertainty principle induced a maximal length of quantum gravity which has different physical implications to the one of generalized uncertainty principle with minimal length. The emergence of a maximal length in this theory revealed strong quantum gravitational effects at this scale and predicted the detection of gravity particles with low energies. To make evidence of these predictions, we study the dynamics of a free particle confined in an infinite square well potential in one dimension of this space. Since the effects of quantum gravity are strong in this space, we show that the energy spectrum of this system is weakly proportional to the ordinary one of quantum mechanics free of the theory of gravity. The states of this particle exhibit proprieties similar to the standard coherent states which are consequences of quantum fluctuation at this scale. Then, with the spectrum of this system at hand, we analyze the thermodynamic quantities within the canonical and micro-canonical ensembles of an ideal gas made up of N indistinguishable particles at the Planck scale. The results show a complete consistency between both statistical descriptions. Furthermore, a comparison with the results obtained in the context of minimal length scenarios and black hole theories indicates that the maximal length in this theory induces logarithmic corrections of deformed parameters which are consequences of a strong quantum gravitational effect.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Ahmad Adel Abutaleb

Diverse theories of quantum gravity expect modifications of the Heisenberg's uncertainty principle near the Planck scale to a so-called Generalized uncertainty principle (GUP). It was shown by some authors that the GUP gives rise to corrections to the Schrodinger , Klein-Gordon, and Dirac equations. By solving the GUP corrected equations, the authors arrived at quantization not only of energy but also of box length, area, and volume. In this paper, we extend the above results to the case of curved spacetime (Schwarzschild metric). We showed that we arrived at the quantization of space by solving Dirac equation with GUP in this metric.


2015 ◽  
Vol 30 (32) ◽  
pp. 1550173 ◽  
Author(s):  
K. Jahankohan ◽  
H. Hassanabadi ◽  
S. Zarrinkamar

We consider the Ramsauer–Townsend effect in the presence of a generalized uncertainty principle (GUP) and within the Dirac equation framework for potential well, step potential and infinite well. The system characteristics are obtained in an exact analytical manner and the effect of minimal length parameter on the spectrum of the system is well-illustrated.


Universe ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 17
Author(s):  
Pasquale Bosso

Several approaches to quantum gravity imply the presence of a minimal measurable length at high energies. This is in tension with the Heisenberg Uncertainty Principle. Such a contrast is then considered in phenomenological approaches to quantum gravity by introducing a minimal length in quantum mechanics via the Generalized Uncertainty Principle. Several features of the standard theory are affected by such a modification. For example, position eigenstates are no longer included in models of quantum mechanics with a minimal length. Furthermore, while the momentum-space description can still be realized in a relatively straightforward way, the (quasi-)position representation acquires numerous issues. Here, we will review such issues, clarifying aspects regarding models with a minimal length. Finally, we will consider the effects of such models on simple quantum mechanical systems.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Deyou Chen ◽  
Zhonghua Li

Hawking’s calculation is unable to predict the final stage of the black hole evaporation. When effects of quantum gravity are taken into account, there is a minimal observable length. In this paper, we investigate fermions’ tunnelling from the charged and rotating black strings. With the influence of the generalized uncertainty principle, the Hawking temperatures are not only determined by the rings, but also affected by the quantum numbers of the emitted fermions. Quantum gravity corrections slow down the increases of the temperatures, which naturally leads to remnants left in the evaporation.


Sign in / Sign up

Export Citation Format

Share Document