scholarly journals First results from the AMoRE-Pilot neutrinoless double beta decay experiment

Author(s):  
V. Alenkov ◽  
H. W. Bae ◽  
J. Beyer ◽  
R. S. Boiko ◽  
K. Boonin ◽  
...  

Abstract The advanced molybdenum-based rare process experiment (AMoRE) aims to search for neutrinoless double beta decay ($$0\nu \beta \beta $$0νββ) of $$^{100}$$100Mo with $$\sim 100\,\hbox {kg}$$∼100kg of $$^{100}$$100Mo-enriched molybdenum embedded in cryogenic detectors with a dual heat and light readout. At the current, pilot stage of the AMoRE project we employ six calcium molybdate crystals with a total mass of 1.9 kg, produced from $$^{48}$$48Ca-depleted calcium and $$^{100}$$100Mo-enriched molybdenum ($$^{48{{\text {depl}}}}\hbox {Ca}^{100}\hbox {MoO}_{4}$$48deplCa100MoO4). The simultaneous detection of heat (phonon) and scintillation (photon) signals is realized with high resolution metallic magnetic calorimeter sensors that operate at milli-Kelvin temperatures. This stage of the project is carried out in the Yangyang underground laboratory at a depth of 700 m. We report first results from the AMoRE-Pilot $$0\nu \beta \beta $$0νββ search with a 111 kg day live exposure of $$^{48{{\text {depl}}}}\hbox {Ca}^{100}\hbox {MoO}_{4}$$48deplCa100MoO4 crystals. No evidence for $$0\nu \beta \beta $$0νββ decay of $$^{100}$$100Mo is found, and a upper limit is set for the half-life of $$0\nu \beta \beta $$0νββ of $$^{100}$$100Mo of $$T^{0\nu }_{1/2} > 9.5\times 10^{22}~\hbox {years}$$T1/20ν>9.5×1022years at 90% C.L. This limit corresponds to an effective Majorana neutrino mass limit in the range $$\langle m_{\beta \beta }\rangle \le (1.2-2.1)\,\hbox {eV}$$⟨mββ⟩≤(1.2-2.1)eV.

2012 ◽  
Vol 2012 ◽  
pp. 1-38 ◽  
Author(s):  
Andrea Giuliani ◽  
Alfredo Poves

This paper introduces the neutrinoless double-beta decay (the rarest nuclear weak process) and describes the status of the research for this transition, both from the point of view of theoretical nuclear physics and in terms of the present and future experimental scenarios. Implications of this phenomenon on crucial aspects of particle physics are briefly discussed. The calculations of the nuclear matrix elements in case of mass mechanisms are reviewed, and a range for these quantities is proposed for the most appealing candidates. After introducing general experimental concepts—such as the choice of the best candidates, the different proposed technological approaches, and the sensitivity—we make the point on the experimental situation. Searches running or in preparation are described, providing an organic presentation which picks up similarities and differences. A critical comparison of the adopted technologies and of their physics reach (in terms of sensitivity to the effective Majorana neutrino mass) is performed. As a conclusion, we try to envisage what we expect round the corner and at a longer time scale.


Symmetry ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1310
Author(s):  
Amina Khatun ◽  
Adam Smetana ◽  
Fedor Šimkovic

The extension of the Standard model by three right-handed neutrino fields exhibit appealing symmetry between left-handed and right-handed sectors, which is only violated by interactions. It can accommodate three flavor quasi-Dirac neutrino mixing scheme, which allows processes with violation of both lepton flavor and total lepton number symmetries. We propose a 6×6 unitary matrix for parameterizing the mixing among three flavors of quasi-Dirac neutrino. This mixing matrix is constructed by two 3×3 unitary matrices that diagonalizes the Dirac mass term in the Lagrangian. By only assuming the Standard Model V−A weak interaction, it is found that probabilities of neutrino oscillations among active flavor states and effective masses measured by single beta decay, by neutrinoless double-beta decay and by cosmology only depend on single 3×3 unitary matrix relevant to mixing of active neutrino flavors. Further, by considering 1σ and 3σ uncertainties in the measured oscillation probability of electron antineutrino from reactor, derivation of the constraint on the Majorana neutrino mass component is demonstrated. The consequence for effective Majorana neutrino mass governing the neutrinoless double-beta decay is discussed.


2003 ◽  
Vol 18 (22) ◽  
pp. 4097-4111 ◽  
Author(s):  
STEVEN R. ELLIOTT

The recent neutrino oscillation experimental results indicate that at least one neutrino has a mass greater than 50 meV. The next generation of double-beta decay experiments will very likely have a sensitivity to an effective Majorana neutrino mass below this target. Therefore this is a very exciting time for this field of research as even null results from these experiments have the potential to elucidate the nature of the neutrino.


2014 ◽  
Vol 29 (16) ◽  
pp. 1450087
Author(s):  
Teruyuki Kitabayashi ◽  
Naoto Koizumi

We estimate Majorana CP phases for a simple flavor neutrino mixing matrix which has been reported by Qu and Ma. Sizes of Majorana CP phases are evaluated in the study of the neutrinoless double beta decay and a particular leptogenesis scenario. We find the dependence of the physically relevant Majorana CP phase on the mass of lightest right-handed neutrino in the minimal seesaw model and the effective Majorana neutrino mass which is related with the half-life of the neutrinoless double beta decay.


2000 ◽  
Vol 15 (16) ◽  
pp. 2447-2453
Author(s):  
A. WODECKI ◽  
W. A. KAMIŃSKI

Neutrinoless double beta decay is one of the exotic processes which is forbidden in the standard model (SM). Its discovery is expected to shed some light on various aspects of nonstandard physics. But also from present experimental lower limits on the lifetime of this process one can extract important information about the effective electron Majorana neutrino mass, effective right handed weak interaction parameters, the Majoron coupling constant, R-parity violation SUSY parameters etc. The e-e- scattering connected directly with the inverse process to 0νββ can also provide us with such interesting physics beyond SM. In this contribution we discuss the formalism which allows deduction of this valuable knowledge from the 0νββ experiments. Results on physics of the R-parity violation are also presented to some extent.


2004 ◽  
Vol 13 (01) ◽  
pp. 367-370 ◽  
Author(s):  
MAREK GÓŹDŹ ◽  
WIESŁAW A. KAMIŃSKI

We present the possible influence on the half-life of neutrinoless double beta decay coming from the existence of n extra spatial dimensions. The half-life in question depends on the mass of the electron neutrino. We base our analysis on the Majorana neutrino mass mechanism in Arkani-Hamed–Dimopoulos–Dvali model.


2013 ◽  
Vol 28 (11) ◽  
pp. 1350032 ◽  
Author(s):  
JOYDEEP CHAKRABORTTY ◽  
MOUMITA DAS ◽  
SUBHENDRA MOHANTY

The vacuum stability condition of the Standard Model (SM) Higgs potential with mass in the range of 124–127 GeV puts an upper bound on the Dirac mass of the neutrinos. We study this constraint with the right-handed neutrino masses up to TeV scale. The heavy neutrinos contribute to ΔL = 2 processes like neutrinoless double beta decay and same-sign-dilepton (SSD) production in the colliders. The vacuum stability criterion also restricts the light-heavy neutrino mixing and constrains the branching ratio (BR) of lepton flavor-violating process, like μ→eγ mediated by the heavy neutrinos. We show that neutrinoless double beta decay with a lifetime ~1025 years can be observed if the lightest heavy neutrino mass is <4.5 TeV. We show that the vacuum stability condition and the experimental bound on μ→e γ together put a constrain on heavy neutrino mass MR>3.3 TeV. Finally we show that the observation of SSDs associated with jets at the LHC needs much larger luminosity than available at present. We have estimated the possible maximum cross-section for this process at the LHC and show that with an integrated luminosity 100 fb-1 it may be possible to observe the SSD signals as long as MR < 400 GeV.


2005 ◽  
Vol 95 (18) ◽  
Author(s):  
R. Arnold ◽  
C. Augier ◽  
J. Baker ◽  
A. Barabash ◽  
G. Broudin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document