scholarly journals Search for a scalar partner of the top quark in the all-hadronic $$t{\bar{t}}$$ plus missing transverse momentum final state at $$\sqrt{s}=13$$ TeV with the ATLAS detector

Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

Abstract A search for direct pair production of scalar partners of the top quark (top squarks or scalar third-generation up-type leptoquarks) in the all-hadronic $$t{\bar{t}}$$tt¯ plus missing transverse momentum final state is presented. The analysis of 139 $$\hbox {fb}^{-1}$$fb-1 of $${\sqrt{s}=13}$$s=13 TeV proton–proton collision data collected using the ATLAS detector at the LHC yields no significant excess over the Standard Model background expectation. To interpret the results, a supersymmetric model is used where the top squark decays via $${\tilde{t}} \rightarrow t^{(*)} {\tilde{\chi }}^0_1$$t~→t(∗)χ~10, with $$t^{(*)}$$t(∗) denoting an on-shell (off-shell) top quark and $${\tilde{\chi }}^0_1$$χ~10 the lightest neutralino. Three specific event selections are optimised for the following scenarios. In the scenario where $$m_{{\tilde{t}}}> m_t+m_{{\tilde{\chi }}^0_1}$$mt~>mt+mχ~10, top squark masses are excluded in the range 400–1250 GeV for $${\tilde{\chi }}^0_1$$χ~10 masses below 200 GeV at 95% confidence level. In the situation where $$m_{{\tilde{t}}}\sim m_t+m_{{\tilde{\chi }}^0_1}$$mt~∼mt+mχ~10, top squark masses in the range 300–630 GeV are excluded, while in the case where $$m_{{\tilde{t}}}< m_W+m_b+m_{{\tilde{\chi }}^0_1}$$mt~<mW+mb+mχ~10 (with $$m_{{\tilde{t}}}-m_{{\tilde{\chi }}^0_1}\ge 5$$mt~-mχ~10≥5 GeV), considered for the first time in an ATLAS all-hadronic search, top squark masses in the range 300–660 GeV are excluded. Limits are also set for scalar third-generation up-type leptoquarks, excluding leptoquarks with masses below 1240 GeV when considering only leptoquark decays into a top quark and a neutrino.

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
◽  
G. Aad ◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

Abstract A search for dark-matter particles in events with large missing transverse momentum and a Higgs boson candidate decaying into two photons is reported. The search uses 139 fb−1 of proton-proton collision data collected at $$ \sqrt{s} $$ s = 13 TeV with the ATLAS detector at the CERN LHC between 2015 and 2018. No significant excess of events over the Standard Model predictions is observed. The results are interpreted by extracting limits on three simplified models that include either vector or pseudoscalar mediators and predict a final state with a pair of dark-matter candidates and a Higgs boson decaying into two photons.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
◽  
G. Aad ◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

Abstract A search for pair production of third-generation scalar leptoquarks decaying into a top quark and a τ-lepton is presented. The search is based on a dataset of pp collisions at $$ \sqrt{s} $$ s = 13 TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb−1. Events are selected if they have one light lepton (electron or muon) and at least one hadronically decaying τ -lepton, or at least two light leptons. In addition, two or more jets, at least one of which must be identified as containing b-hadrons, are required. Six final states, defined by the multiplicity and flavour of lepton candidates, are considered in the analysis. Each of them is split into multiple event categories to simultaneously search for the signal and constrain several leading backgrounds. The signal-rich event categories require at least one hadronically decaying τ-lepton candidate and exploit the presence of energetic final-state objects, which is characteristic of signal events. No significant excess above the Standard Model expectation is observed in any of the considered event categories, and 95% CL upper limits are set on the production cross section as a function of the leptoquark mass, for different assumptions about the branching fractions into tτ and bν. Scalar leptoquarks decaying exclusively into tτ are excluded up to masses of 1.43 TeV while, for a branching fraction of 50% into tτ, the lower mass limit is 1.22 TeV.


2021 ◽  
Vol 81 (1) ◽  
Author(s):  
A. M. Sirunyan ◽  
◽  
A. Tumasyan ◽  
W. Adam ◽  
F. Ambrogi ◽  
...  

AbstractA search is presented for supersymmetric partners of the top quark (top squarks) in final states with two oppositely charged leptons (electrons or muons), jets identified as originating from $${\text {b}}$$ b quarks, and missing transverse momentum. The search uses data from proton-proton collisions at $$\sqrt{s}=13\,\text {TeV} $$ s = 13 TeV collected with the CMS detector, corresponding to an integrated luminosity of 137$$\,{\text {fb}}^{-1}$$ fb - 1 . Hypothetical signal events are efficiently separated from the dominant top quark pair production background with requirements on the significance of the missing transverse momentum and on transverse mass variables. No significant deviation is observed from the expected background. Exclusion limits are set in the context of simplified supersymmetric models with pair-produced lightest top squarks. For top squarks decaying exclusively to a top quark and a lightest neutralino, lower limits are placed at $$95\%$$ 95 % confidence level on the masses of the top squark and the neutralino up to 925 and 450$$\,\text {GeV}$$ GeV , respectively. If the decay proceeds via an intermediate chargino, the corresponding lower limits on the mass of the lightest top squark are set up to 850$$\,\text {GeV}$$ GeV for neutralino masses below 420$$\,\text {GeV}$$ GeV . For top squarks undergoing a cascade decay through charginos and sleptons, the mass limits reach up to 1.4$$\,\text {TeV}$$ TeV and 900$$\,\text {GeV}$$ GeV respectively for the top squark and the lightest neutralino.


Sign in / Sign up

Export Citation Format

Share Document