scholarly journals Search for pair production of third-generation scalar leptoquarks decaying into a top quark and a τ-lepton in pp collisions at $$ \sqrt{s} $$ = 13 TeV with the ATLAS detector

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
◽  
G. Aad ◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

Abstract A search for pair production of third-generation scalar leptoquarks decaying into a top quark and a τ-lepton is presented. The search is based on a dataset of pp collisions at $$ \sqrt{s} $$ s = 13 TeV recorded with the ATLAS detector during Run 2 of the Large Hadron Collider, corresponding to an integrated luminosity of 139 fb−1. Events are selected if they have one light lepton (electron or muon) and at least one hadronically decaying τ -lepton, or at least two light leptons. In addition, two or more jets, at least one of which must be identified as containing b-hadrons, are required. Six final states, defined by the multiplicity and flavour of lepton candidates, are considered in the analysis. Each of them is split into multiple event categories to simultaneously search for the signal and constrain several leading backgrounds. The signal-rich event categories require at least one hadronically decaying τ-lepton candidate and exploit the presence of energetic final-state objects, which is characteristic of signal events. No significant excess above the Standard Model expectation is observed in any of the considered event categories, and 95% CL upper limits are set on the production cross section as a function of the leptoquark mass, for different assumptions about the branching fractions into tτ and bν. Scalar leptoquarks decaying exclusively into tτ are excluded up to masses of 1.43 TeV while, for a branching fraction of 50% into tτ, the lower mass limit is 1.22 TeV.

2021 ◽  
Vol 81 (4) ◽  
Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

AbstractA search for pair production of scalar leptoquarks, each decaying into either an electron or a muon and a top quark, is presented. This is the first leptoquark search using ATLAS data to investigate top-philic cross-generational couplings that could provide explanations for recently observed anomalies in B meson decays. This analysis targets high leptoquark masses which cause the decay products of each resultant top quark to be contained within a single high-$$p_{\mathrm {T}}$$ p T large-radius jet. The full Run 2 dataset is exploited, consisting of $$139~\hbox {fb}^{-1}$$ 139 fb - 1 of data collected from proton–proton collisions at $$\sqrt{s}=13~\mathrm {TeV}$$ s = 13 TeV from 2015 to 2018 with the ATLAS detector at the CERN Large Hadron Collider. In the absence of any significant deviation from the background expectation, lower limits on the leptoquark masses are set at $$1480~\mathrm {GeV}$$ 1480 GeV and $$1470~\mathrm {GeV}$$ 1470 GeV for the electron and muon channel, respectively.


2015 ◽  
Vol 39 ◽  
pp. 1560092
Author(s):  
Marcella Capua

The latest top quark studies in proton-proton collisions at a centre-of-mass energy of 7 and 8 TeV with the ATLAS detector are reported. We present recent results on the top pair production inclusive cross-sections, top pair production differential cross-section in the resolved and boosted regimes, single top-quark production cross-sections measured in the t-channel, s-channel and W-boson associated processes, as well as the determination of the CKM matrix element [Formula: see text]. The results are compared with theoretical expectations. Latest ATLAS results on top properties will be also shown in terms of direct and pole mass, spin correlations and charge asymmetry.


Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

Abstract A search for direct pair production of scalar partners of the top quark (top squarks or scalar third-generation up-type leptoquarks) in the all-hadronic $$t{\bar{t}}$$tt¯ plus missing transverse momentum final state is presented. The analysis of 139 $$\hbox {fb}^{-1}$$fb-1 of $${\sqrt{s}=13}$$s=13 TeV proton–proton collision data collected using the ATLAS detector at the LHC yields no significant excess over the Standard Model background expectation. To interpret the results, a supersymmetric model is used where the top squark decays via $${\tilde{t}} \rightarrow t^{(*)} {\tilde{\chi }}^0_1$$t~→t(∗)χ~10, with $$t^{(*)}$$t(∗) denoting an on-shell (off-shell) top quark and $${\tilde{\chi }}^0_1$$χ~10 the lightest neutralino. Three specific event selections are optimised for the following scenarios. In the scenario where $$m_{{\tilde{t}}}> m_t+m_{{\tilde{\chi }}^0_1}$$mt~>mt+mχ~10, top squark masses are excluded in the range 400–1250 GeV for $${\tilde{\chi }}^0_1$$χ~10 masses below 200 GeV at 95% confidence level. In the situation where $$m_{{\tilde{t}}}\sim m_t+m_{{\tilde{\chi }}^0_1}$$mt~∼mt+mχ~10, top squark masses in the range 300–630 GeV are excluded, while in the case where $$m_{{\tilde{t}}}< m_W+m_b+m_{{\tilde{\chi }}^0_1}$$mt~<mW+mb+mχ~10 (with $$m_{{\tilde{t}}}-m_{{\tilde{\chi }}^0_1}\ge 5$$mt~-mχ~10≥5 GeV), considered for the first time in an ATLAS all-hadronic search, top squark masses in the range 300–660 GeV are excluded. Limits are also set for scalar third-generation up-type leptoquarks, excluding leptoquarks with masses below 1240 GeV when considering only leptoquark decays into a top quark and a neutrino.


2019 ◽  
Vol 79 (11) ◽  
Author(s):  
N. Manglani ◽  
A. Misra ◽  
K. Sridhar

AbstractWe present a search strategy for the first Kaluza–Klein (KK) mode of the Higgs boson in the framework of the Randall–Sundrum (RS) model with a deformed metric. We study the production of this massive excitation in association with a $$ t {\bar{t}}$$tt¯ pair at the large hadron collider (LHC). The KK Higgs primarily decays into a boosted $$t {\bar{t}}$$tt¯ final state and we then end up with an interesting four-top final state of which two are boosted. The boosted products in the final state improve the sensitivity for the search of the KK Higgs in this channel whose production cross-section is otherwise rather small. Our results suggest that masses of the KK Higgs resonance upto about 1.2 TeV may be explorable at the highest planned luminosities of the LHC. Beyond this mass, the KK Higgs cross-section is too tiny for it to be explored at the LHC and may be possible only at a future higher energy collider.


2018 ◽  
Vol 182 ◽  
pp. 02065
Author(s):  
Nicolas Köhler

Naturalness arguments for weak-scale supersymmetry favour supersymmetric partners of the third generation quarks with masses not too far from those of their Standard Model counterparts. Top or bottom squarks with masses less than or around one TeV can also give rise to direct pair production rates at the Large Hadron Collider (LHC) that can be observed in the data sample recorded by the ATLAS detector. This document presents recent ATLAS results from searches for direct top and bottom squark pair production considering both R-parity conserving and R-parity violating scenarios, using the data collected during the LHC Run 2 at a centre-of-mass energy of √s = 13 TeV.


2021 ◽  
Vol 81 (8) ◽  
Author(s):  
G. Aad ◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
K. Abeling ◽  
...  

AbstractThe production cross-section of a top quark in association with a W boson is measured using proton–proton collisions at $$\sqrt{s} = 8\,\text {TeV}$$ s = 8 TeV . The dataset corresponds to an integrated luminosity of $$20.2\,\text {fb}^{-1}$$ 20.2 fb - 1 , and was collected in 2012 by the ATLAS detector at the Large Hadron Collider at CERN. The analysis is performed in the single-lepton channel. Events are selected by requiring one isolated lepton (electron or muon) and at least three jets. A neural network is trained to separate the tW signal from the dominant $$t{\bar{t}}$$ t t ¯ background. The cross-section is extracted from a binned profile maximum-likelihood fit to a two-dimensional discriminant built from the neural-network output and the invariant mass of the hadronically decaying W boson. The measured cross-section is $$\sigma _{tW} = 26 \pm 7\,\text {pb}$$ σ tW = 26 ± 7 pb , in good agreement with the Standard Model expectation.


Sign in / Sign up

Export Citation Format

Share Document