scholarly journals Simplified fast detector simulation in MadAnalysis 5

2021 ◽  
Vol 81 (4) ◽  
Author(s):  
Jack Y. Araz ◽  
Benjamin Fuks ◽  
Georgios Polykratis

AbstractWe introduce a new simplified fast detector simulator in the MadAnalysis 5 platform. The Python-like interpreter of the programme has been augmented by new commands allowing for a detector parametrisation through smearing and efficiency functions. On run time, an associated C++ code is automatically generated and executed to produce reconstructed-level events. In addition, we have extended the MadAnalysis 5 recasting infrastructure to support our detector emulator, and we provide predefined LHC detector configurations. We have compared predictions obtained with our approach to those resulting from the usage of the Delphes 3 software, both for Standard Model processes and a few new physics signals. Results generally agree to a level of about 10% or better, the largest differences in the predictions stemming from the different strategies that are followed to model specific detector effects. Equipped with these new functionalities, MadAnalysis 5 now offers a new user-friendly way to include detector effects when analysing collider events, the simulation of the detector and the analysis being both handled either through a set of intuitive Python commands or directly within the C++ core of the platform.

2007 ◽  
Author(s):  
Γρηγόριος Βερμίσογλου

This study contains the first realistic estimate for the CMS/LHC sensitivity to Flavour Changing Neutral Currents (FCNC) in the top quark sector. The non-Standard Model decays t→Zq and t→ γ q (where q = u, c) have been studied at √s = 14 TeV exploiting the leptonic decays of the Z⁰ boson and the photon. A realistic detector simulation has been used and the most important systematic effects have been addressed. The 5-sigma discovery limits for the two decays are BR(t→qZ)= 11.4 x 10⁻⁴ and BR(t→ γ q)= 5.7 x 10⁻⁴, allowing some models of new physics to be tested.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Jason Aebischer ◽  
Benjamín Grinstein

Abstract Applying an operator product expansion approach we update the Standard Model prediction of the Bc lifetime from over 20 years ago. The non-perturbative velocity expansion is carried out up to third order in the relative velocity of the heavy quarks. The scheme dependence is studied using three different mass schemes for the $$ \overline{b} $$ b ¯ and c quarks, resulting in three different values consistent with each other and with experiment. Special focus has been laid on renormalon cancellation in the computation. Uncertainties resulting from scale dependence, neglecting the strange quark mass, non-perturbative matrix elements and parametric uncertainties are discussed in detail. The resulting uncertainties are still rather large compared to the experimental ones, and therefore do not allow for clear-cut conclusions concerning New Physics effects in the Bc decay.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Aoife Bharucha ◽  
Diogo Boito ◽  
Cédric Méaux

Abstract In this paper we consider the decay D+ → π+ℓ+ℓ−, addressing in particular the resonance contributions as well as the relatively large contributions from the weak annihilation diagrams. For the weak annihilation diagrams we include known results from QCD factorisation at low q2 and at high q2, adapting the existing calculation for B decays in the Operator Product Expansion. The hadronic resonance contributions are obtained through a dispersion relation, modelling the spectral functions as towers of Regge-like resonances in each channel, as suggested by Shifman, imposing the partonic behaviour in the deep Euclidean. The parameters of the model are extracted using e+e− → (hadrons) and τ → (hadrons) + ντ data as well as the branching ratios for the resonant decays D+ → π+R(R → ℓ+ℓ−), with R = ρ, ω, and ϕ. We perform a thorough error analysis, and present our results for the Standard Model differential branching ratio as a function of q2. Focusing then on the observables FH and AFB, we consider the sensitivity of this channel to effects of physics beyond the Standard Model, both in a model independent way and for the case of leptoquarks.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Henning Bahl ◽  
Philip Bechtle ◽  
Sven Heinemeyer ◽  
Judith Katzy ◽  
Tobias Klingl ◽  
...  

Abstract The $$ \mathcal{CP} $$ CP structure of the Higgs boson in its coupling to the particles of the Standard Model is amongst the most important Higgs boson properties which have not yet been constrained with high precision. In this study, all relevant inclusive and differential Higgs boson measurements from the ATLAS and CMS experiments are used to constrain the $$ \mathcal{CP} $$ CP -nature of the top-Yukawa interaction. The model dependence of the constraints is studied by successively allowing for new physics contributions to the couplings of the Higgs boson to massive vector bosons, to photons, and to gluons. In the most general case, we find that the current data still permits a significant $$ \mathcal{CP} $$ CP -odd component in the top-Yukawa coupling. Furthermore, we explore the prospects to further constrain the $$ \mathcal{CP} $$ CP properties of this coupling with future LHC data by determining tH production rates independently from possible accompanying variations of the $$ t\overline{t}H $$ t t ¯ H rate. This is achieved via a careful selection of discriminating observables. At the HL-LHC, we find that evidence for tH production at the Standard Model rate can be achieved in the Higgs to diphoton decay channel alone.


2021 ◽  
Vol 812 ◽  
pp. 136026
Author(s):  
Zihan Zhou ◽  
Jun Yan ◽  
Andrea Addazi ◽  
Yi-Fu Cai ◽  
Antonino Marciano ◽  
...  

Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 222
Author(s):  
Maxim Khlopov

A.D. Sakharov’s legacy in now standard model of the Universe is not reduced to baryosynthesis but extends to the foundation of cosmoparticle physics, which studies the fundamental relationship of cosmology and particle physics. Development of cosmoparticle physics involves cross-disciplinary physical, astrophysical and cosmological studies of physics Beyond the Standard model (BSM) of elementary particles. To probe physical models for inflation, baryosynthesis and dark matter cosmoparticle physics pays special attention to model dependent messengers of the corresponding models, making their tests possible. Positive evidence for such exotic phenomena as nuclear interacting dark atoms, primordial black holes or antimatter globular cluster in our galaxy would provide the selection of viable BSM models determination of their parameters.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 191
Author(s):  
Alexander Bednyakov ◽  
Alfiia Mukhaeva

Flavour anomalies have attracted a lot of attention over recent years as they provide unique hints for possible New Physics. Here, we consider a supersymmetric (SUSY) extension of the Standard Model (SM) with an additional anomaly-free gauge U(1) group. The key feature of our model is the particular choice of non-universal charges to the gauge boson Z′, which not only allows a relaxation of the flavour discrepancies but, contrary to previous studies, can reproduce the SM mixing matrices both in the quark and lepton sectors. We pay special attention to the latter and explicitly enumerate all parameters relevant for our calculation in the low-energy effective theory. We find regions in the parameter space that satisfy experimental constraints on meson mixing and LHC Z′ searches and can alleviate the flavour anomalies. In addition, we also discuss the predictions for lepton-flavour violating decays B+→K+μτ and B+→K+eτ.


Sign in / Sign up

Export Citation Format

Share Document