scholarly journals Quantum field theory of space-like neutrino

2021 ◽  
Vol 81 (8) ◽  
Author(s):  
Jakub Rembieliński ◽  
Paweł Caban ◽  
Jacek Ciborowski

AbstractWe performed a Lorentz covariant quantization of the spin-1/2 fermion field assuming the space-like energy-momentum dispersion relation. We achieved the task in the following steps: (i) determining the unitary realizations of the inhomogenous Lorentz group in the preferred frame scenario by means of the Wigner–Mackey induction procedure and constructing the Fock space; (ii) formulating the theory in a manifestly covariant way by constructing the field amplitudes according to the Weinberg method; (iii) obtaining the final constraints on the amplitudes by postulating a Dirac-like free field equation. Our theory allows to predict all chiral properties of the neutrinos, preserving the Standard Model dynamics. We discussed the form of the fundamental observables, energy and helicity, and show that non-observation of the $$+\tfrac{1}{2}$$ + 1 2 helicity state of the neutrino and the $$-\tfrac{1}{2}$$ - 1 2 helicity state of the antineutrino could be a direct consequence of the “tachyoneity” of neutrinos at the free level. We found that the free field theory of the space-like neutrino is not invariant under the C and P transformations separately but is CP-invariant. We calculated and analyzed the electron energy spectrum in tritium decay within the framework of our theory and found an excellent agreement with the recent measurement of KATRIN. In our formalism the questions of negative/imaginary energies and the causality problem does not appear.

1993 ◽  
Vol 08 (23) ◽  
pp. 4031-4053
Author(s):  
HOVIK D. TOOMASSIAN

The structure of the free field representation and some four-point correlation functions of the SU(3) conformal field theory are considered.


2002 ◽  
Vol 80 (5) ◽  
pp. 605-612
Author(s):  
B Ding ◽  
J W Darewych

We discuss a variational method for describing relativistic four-body systems within the Hamiltonian formalism of quantum field theory. The scalar Yukawa (or Wick–Cutkosky) model, in which scalar particles and antiparticles interact via a massive or massless scalar field, is used to illustrate the method. A Fock-space variational trial state is used to describe the stationary states of scalar quadronium (two particles and two antiparticles) interacting via one-quantum exchange and virtual annihilation pairwise interactions. Numerical results for the ground-state mass and approximate wave functions of quadronium are presented for various strengths of the coupling, for the massive and massless quantum exchange cases. PACS Nos.: 11.10Ef, 11.10St, 03.70+k, 03.65Pm


1997 ◽  
Vol 12 (19) ◽  
pp. 3307-3334 ◽  
Author(s):  
C. Arvanitis ◽  
F. Geniet ◽  
M. Iacomi ◽  
J.-L. Kneur ◽  
A. Neveu

We show how to perform systematically improvable variational calculations in the O(2N) Gross–Neveu model for generic N, in such a way that all infinities usually plaguing such calculations are accounted for in a way compatible with the perturbative renormalization group. The final point is a general framework for the calculation of nonperturbative quantities like condensates, masses, etc., in an asymptotically free field theory. For the Gross–Neveu model, the numerical results obtained from a "two-loop" variational calculation are in a very good agreement with exact quantities down to low values of N.


1977 ◽  
Vol 20 (6) ◽  
pp. 205-209
Author(s):  
K. Watanabe ◽  
K. Ninomiya ◽  
M. Wada

2011 ◽  
Vol 26 (32) ◽  
pp. 5387-5402 ◽  
Author(s):  
JOSÉ F. NIEVES

The Thermal Field Theory methods are applied to calculate the dispersion relation of the photon propagating modes in a strictly one-dimensional (1D) ideal plasma. The electrons are treated as a gas of particles that are confined to a 1D tube or wire, but are otherwise free to move, without reference to the electronic wave functions in the coordinates that are transverse to the idealized wire, or relying on any features of the electronic structure. The relevant photon dynamical variable is an effective field in which the two space coordinates that are transverse to the wire are collapsed. The appropriate expression for the photon free-field propagator in such a medium is obtained, the one-loop photon self-energy is calculated and the (longitudinal) dispersion relations are determined and studied in some detail. Analytic formulas for the dispersion relations are given for the case of a degenerate electron gas, and the results differ from the long-wavelength formula that is quoted in the literature for the strictly 1D plasma. The dispersion relations obtained resemble the linear form that is expected in realistic quasi-1D plasma systems for the entire range of the momentum, and which have been observed in this kind of system in recent experiments.


1988 ◽  
Vol 03 (06) ◽  
pp. 639-643 ◽  
Author(s):  
GIORGIO PARISI

In this letter we present a possible form of quantum mechanics in the case where the dynamical variables (or the time) are p-adic numbers. We also present a possible formulation of two-dimensional free field theory on a two-dimensional p-adic space.


2016 ◽  
Vol 28 (04) ◽  
pp. 1650007 ◽  
Author(s):  
Asao Arai

We consider a family of irreducible Weyl representations of canonical commutation relations with infinite degrees of freedom on the abstract boson Fock space over a complex Hilbert space. Theorems on equivalence or inequivalence of the representations are established. As a simple application of one of these theorems, the well-known inequivalence of the time-zero field and conjugate momentum for different masses in a quantum scalar field theory is rederived with space dimension [Formula: see text] arbitrary. Also a generalization of representations of the time-zero field and conjugate momentum is presented. Comparison is made with a quantum scalar field in a bounded region in [Formula: see text]. It is shown that, in the case of a bounded space region with [Formula: see text], the representations for different masses turn out to be mutually equivalent.


Sign in / Sign up

Export Citation Format

Share Document